
Fuzzy Di�erence in Di�erences & Fuzzy Change in Change∗

Clément de Chaisemartin†‡

May 13, 2011

Abstract

Di�erence in Di�erences (DID) and Change in Change (CIC) require �perfect compliance�:

treatment rate should be 0% in the control group and during period 0 (no �always takers�) and

100% in the treatment group in period 1 (no �never takers�). In many instances, the treatment rate

increases more in the treatment than in the control group but there are never or always takers.

This paper derives identi�cation results which apply to such �fuzzy DID� and �fuzzy CIC� settings.

Its �rst contribution is that its fuzzy DID identi�cation results only require one common trend

assumption on the outcome (Y ) whereas the standard instrumental variable (IV) result usually

invoked in such settings relies on a supplementary common trend assumption on treatment rate

and on a �no de�ers� assumption. When there are never takers but no always takers, common trend

on Y is su�cient to identify an ATT as with standard DID. When there are always takers, it is no

longer su�cient but partial identi�cation is still possible provided Y is bounded. It is also possible

to derive a second and narrower identi�cation region under the supplementary assumption that

treatment e�ects do not change between the two periods in the control group. I use those �ndings

to measure the e�cacy of a new pharmacotherapy for smoking cessation. Its second contribution

is that it is the �rst paper which considers extending the CIC model to applications with imperfect

compliance. The CIC assumptions are not su�cient for identi�cation when the perfect compliance

assumption is violated. One important exception is when there are no always takers, in which case
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CIC assumptions are su�cient. Otherwise, only partial identi�cation is obtained. Moreover, when

there are always takers but the share of treated observations in the control group remained stable

between period 0 and 1, point identi�cation can be recovered through a slight strengthening of the

CIC assumptions which amounts to de�ning an IV-CIC model.

Keywords: Di�erence in Di�erences, heterogeneous treatment e�ect, imperfect compliance, partial

identi�cation, smoking cessation, Change in Change, quantile treatment e�ects

JEL Codes: C21, C23, I19
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Introduction

Since the seminal work by Ashenfelter and Card [1985], di�erences in di�erences (DID) are

commonly used to estimate average treatment e�ects on the treated (ATT) when treatment D is not

randomly allocated. DID compare the evolution of some mean outcome Y between two periods (0

and 1) and across two groups of individuals (control and treatment). In Rubin's causal model where

potential outcomes with and without treatment (Y (1) and Y (0)) are introduced, and where treatment

e�ects (Y (1) − Y (0)) are allowed to be heterogeneous across observations, it has been shown that a

DID identi�es an ATT under two assumptions (see Abadie [2005]). The �rst one is a common trend

assumption which states that if all observations had remained untreated the mean of Y would have

followed parallel trends from period 0 to 1 in the two groups. The second one, which is implicit,

is a perfect compliance assumption: the treatment rate should be equal to 0% in the control group

and during period 0 (no �always takers�) and to 100% in the treatment group in period 1 (no �never

takers�).1 In many instances, this last assumption is violated: the treatment rate (or treatment

intensity if treatment is multivariate) increases more in the treatment than in the control group but

there are �never� or �always� takers.2 This di�erential change in treatment rate / intensity across the

control and the treatment group might still be used to identify an ATT. This is what I refer to as a

fuzzy DID identi�cation strategy.

When compliance is imperfect, common trend alone is not su�cient for identi�cation in a model

allowing for heterogeneous treatment e�ect. Under common trend on Y (0), if no observation is treated

in any group, trends are parallel in the two groups and the DID is merely equal to 0. In a standard

DID, the only reason why trends might diverge across groups is that observations in the treatment

group × period 1 cell get treated, so that the DID measures the e�ect of the treatment on them. A

DID computation will therefore yield one equation with only one unknown. In a fuzzy DID, since there

might be treated observations in each of the four time × group cells, diverging trends can potentially

1By never takers, I merely refer to untreated observations in the treatment group in period 1. Always takers are
treated observations in the three other groups.

2This might not be an issue when panel data is available. In this case, researchers can indeed choose observations
making up the treatment and the control group. They can for instance keep only observations of the control group who
were untreated in period 0 and 1, and observations of the treatment group untreated in period 0 and treated in period 1
(see for instance Field [2005]). Despite its arbitrariness, which de�nition of groups ensures that the perfect compliance
assumption is met. But when only pooled cross-sections are available, it is no longer possible to select observations thus.
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arise from the e�ect of the treatment within each of those four subgroups and a DID computation will

yield one equation with up to four unknowns. The identi�cation problem arises because Y (1)−Y (0) is

allowed to vary across observations, implying that the e�ect of the treatment might vary across cells.

Assuming Y (1)− Y (0) to be constant across observations would solve the issue: the unknowns in the

DID equation would all be equal to each other so that we would be back to one equation with one

unknown.

Therefore, the starting point of the paper is to show that in a fuzzy DID, when treatment e�ect is

allowed to be heterogeneous, a common trend assumption on Y (0) is generally not su�cient to identify

some ATT. However, in the special case where there are never takers but no always takers (a situation I

henceforth refer to as the �no always takers� special case), this assumption is su�cient for identi�cation,

as in the standard DID model. Indeed, in such a situation, even though not all observations of the

test group are treated in period 1, there are still treated observations in one group only, so that a DID

computation will yield one equation with one unknown. When there are always takers, common trend

on Y (0) does not allow for point identi�cation, but partial identi�cation of some ATT is still possible

provided Y is bounded. I derive explicit sharp bounds in this case. The identi�cation region is likely

to be narrow enough to identify the sign of this ATT when there are �few� always takers. Whether

there are �many� or �few� never takers does not matter. It is also possible to derive a second and

narrower identi�cation region for the same ATT under the supplementary assumption that treatment

e�ects do not change between the two periods in the control group. This second identi�cation region

will be narrow when there are few treated observations in the treatment group in period 0, and when

the change in the the treatment rate from period 0 to 1 is small in the control group.

Actually, fuzzy DID has already been used often in the applied economics literature. Up to

now, researchers who implemented it estimated the impact of the treatment through an instrumental

variable (IV) regression using the interaction of time and group as an instrument for treatment. The

resulting coe�cient is the DID on Y divided by the DID on D. Du�o [2001] uses this strategy to

estimate the impact of educational attainment on wages. Papers which use di�erential evolution of

exposure to treatment across US states to estimate treatment e�ects build upon the same intuition.

A good example is Evans and Ringel [1999] who use changes in cigarette taxes across US states as an
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instrument for smoking prevalence among pregnant women, in order to estimate the impact of smoking

during pregnancy on children's weight. Because their regressions include state and year �xed e�ects,

their estimate arises from the comparison of the evolution of children's weight in states with changes

in tax to the same evolution in states with no changes in tax. However, the underlying assumptions

of this identi�cation strategy have not been clari�ed so far. Imbens and Angrist [1994] have shown

that IV coe�cients can be interpreted as a local average treatment e�ect (LATE) in a model allowing

for heterogeneous treatment e�ect. I put forward in a companion note (de Chaisemartin [2011]) that

when applied to fuzzy DID their result holds under two common trend assumptions, on Y and on D,

and a monotonicity assumption (no �de�ers�). Common trend on Y allows recovering the intention to

treat e�ect of the policy, whereas common trend on D allows recovering the share of compliers.

Consequently, my fuzzy DID results contribute to the literature because they require only one

common trend assumption on Y . Thus, I remove the monotonicity condition. Even though it is often

thought of as an innocuous assumption, it may be restrictive in some instances as discussed in Small

and Tan [2007]. Above all, they do not require common trend on D. One might argue that the

marginal cost of this second common trend assumption is weaker than for the �rst: if one is ready

to believe that without the program trends would have been parallel on Y , one should be ready to

take the same assumption on D. However, this might not always be true. For instance, in Evans and

Ringel [1999], it may be the case that states which choose to rise taxes on cigarettes do so because

they face an increasing trend in smoking, whereas there is no reason to suspect that this decision is

related to trends on babies weight at birth. Moreover, even in applications where there is no obvious

reason to suspect that trends on Y or on D would have strongly diverged, there is no reason why

they should have been exactly parallels neither because assignment to treatment is not random. The

most one can reasonably expect is that trends in the untreated group provide a fairly good �rst order

approximation of what would have happened in the treated group. Results requiring one �rst order

approximation might therefore be more reliable than results requiring two. The combination of two

small errors in the numerator and in the denominator of the Wald-DID could indeed lead to a large

di�erence between the Wald-DID and the true treatment e�ect. Therefore, the �rst contribution of

this paper is to bring new fuzzy DID identi�cation results which rely on weaker assumptions than the
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standard Imbens and Angrist IV result.

Those fuzzy DID results might be useful in applications with no or few always takers. To illustrate

this, I measure the e�cacy of a new pharmacotherapy for smoking cessation. Varenicline is a drug which

was made available to French cessation clinics in February 2007 as one possible pharmacotherapy for

smoking cessation support. In 15 services, less than 3% of all patients consulted have been prescribed

varenicline during the year following its release. In 13 services, more than 20% of patients were

prescribed varenicline. Because in this application there are some but few always takers, I derive

bounds for the ATT which are narrow enough to infer its sign. Had there been more always takers, 0

would lie within the identi�cation region. Therefore, in a fuzzy DID, common trend on Y is su�cient

to obtain accurate information on an ATT when there are few always takers, even if there are many

never takers. My results might also be useful in applications considering the extension of a policy, that

is to say when the control group was already eligible in period 0 and the test group became eligible

in period 1 (see for instance Bach [2009]). Indeed, in such situations the share of treated observations

in the treatment group in period 1 is by de�nition equal to 0. Consequently, the second identi�cation

region I derive will be narrow provided the share of treated observations did not change too much

between period 0 and 1 in the control group.

The main limitation of DID and fuzzy DID is that they identify only the average e�ect of the

treatment within speci�c populations whereas one might be interested in other parameters, such as

quantile treatment e�ects. In the DID literature, two approaches already exist to estimate quantile

treatment e�ects. The most common approach is the quantile-DID, in which the transformation used

to reconstruct the counterfactual distribution of the outcome is to add the change over time at the qth

quantile in the control group to the qth quantile of the �rst-period treatment group (see Meyer et al.

[1995] and Poterba et al. [1995]). This amounts to matching treatment and control observations in

period 0 on their quantile, and period 0 and period 1 observations in the control group on their quantile

as well. Athey and Imbens [2002] show that the model rationalizing this transformation has several

unattractive features: it assumes that time and group e�ects are additively separable, its assumptions

are not robust to a monotonous transform of Y and it places restrictions on the data. Therefore, Athey

and Imbens [2006] suggested another transformation to reconstruct the counterfactual distribution of
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the outcome. It amounts to matching period 0 treatment and control observations on their value of Y ,

and period 0 and period 1 control observations on their quantile. They show that this transformation

can be rationalized by a model, the Change in Change (CIC) which has several important advantages

with respect to the quantile-DID model: it does not rely on additive separability in time and group,

its assumptions are robust to a monotonous transform of Y and it does not place restrictions on the

data.

In fuzzy applications, that is to say in situations where the treatment rate increases more in one

group but where there are never and / or always takers, there is not yet a well-established procedure to

study quantile treatment e�ects. A �rst solution could be quantile IV regressions in which treatment

is instrumented by a time and group interaction. However, we still lack a clear consensus on how to do

quantile IV-regressions (see Abadie et al. [2002] and Chernozukhov and Hansen [2005]). Moreover, to

the best of my knowledge no paper considered whether the existing quantile IV regressions are adapted

to fuzzy DID. An extension of the CIC model to situations of imperfect compliance could provide a

second solution. The second contribution of this paper is to develop such an extension.

Fuzzy CIC results are strikingly close to fuzzy DID results. Indeed, my �rst fuzzy CIC result is

a non identi�cation result: when compliance is imperfect, the mechanics of the CIC model collapse.

To understand why, one needs �rst to understand how the CIC model works. Think of Y as wages,

and of treatment as whether an individual completed highschool. Potential wages with and without

completing highschool are denoted Y (1) and Y (0). The perfect compliance assumption states that all

observations in the test group × period 1 cell completed highschool and no observations in the three

remaining cells completed it. We seek to reconstruct the counterfactual distribution of wages without

completing highschool in the period 1 × test group cell. On that purpose, period 0 observations with

same wages in the test and in the control group are matched. To rationalize this matching, it is

assumed that Y (0) is a function of time and of an unobserved heterogeneity index U . Since those

observations did not complete highschool, are observed at the same period and have the same wages,

they must have the same U . Then period 0 and period 1 observations in the control group are matched

on their quantile in the distribution of wages. It is indeed assumed that groups are stable over time

so that the distribution of U is time invariant within group: since those observations belong to the
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same group and have same rank they must have the same U . Finally, combining those two matching,

period 0 observations in the treatment group are matched to period 1 observations in the control group

with same U . Wages of the latter observations are counterfactual wages that the former would have

obtained in period 1 if they had not completed highschool.

But when compliance is imperfect, this double matching collapses. Two control and test group

observations with same wages in period 0 might no longer have the same U , because one might

have completed highschool whereas the other might not. Despite the fact they have same wages, the

observation which did not complete highschool probably has greater unobserved ability, which enabled

it to compensate for its lower education. Similarly, two control group observations with same rank in

period 0 and 1 might not have the same U . Assume that more observations completed highschool in

period 1. Then, the period 1 observation probably has greater unobserved ability: it has the same

rank despite the fact that more people have completed highschool in its cell.

Despite this general non identi�cation result, there is one special case of imperfect compliance to

which the CIC model readily extends, exactly as with fuzzy DID. When there are no always takers,

the counterfactual distribution of wages without completing highschool in the period 1 × treatment

group cell is identi�ed under the exact same assumptions as in Athey and Imbens [2006]. This is

because in this special case no observations are treated in period 0, so that period 0 treatment and

control observations can be matched on their wages as in the standard CIC model. Moreover, since

by assumption no observations are treated in period 0 and 1 in the control group, control observations

in the two periods can be matched based on their quantile: their ranking cannot have been disrupted

by a change in treatment rate. Therefore, the double matching process works. One just needs to

account for the fact that not all observations in the period 1 × treatment group cell are treated

when computing quantile treatment e�ects. Moreover, I also show that even when there are always

takers, CIC assumptions are still su�cient to place bounds on the distribution of Y (0) among treated

observations of the period 1 × treatment group cell so that quantile treatment e�ects are partially

identi�ed. The resulting bounds will be tight when the shares of treated observations within the three

remaining cells are small as what happens with fuzzy DID.

When there are large shares of always takers, quantile treatment e�ects can still be identi�ed
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through a strengthening of Athey and Imbens's assumptions. It requires introducing an instrument

for treatment which should be in a one to one relationship with the time and group interaction term.

This could for instance be a policy which gives supplementary incentives to complete highschool such

as a new bene�t, which was released in period 1 and is available only to test group individuals.

It also requires assuming that treated (resp. untreated) observations in the control group have the

same distribution of U in period 0 and 1. For this last assumption to be credible, the share of treated

observations should be stable between period 0 and 1 in the control group. Under those supplementary

assumptions, distributions of Y (1) and Y (0) among compliers of the period 1 × treatment group cell are

identi�ed, as well as various parameters of interest such as a Local Average Treatment E�ect (LATE)

and quantile treatment e�ects within this population. This result will prove particularly useful in

applications considering extensions of a program to a new group previously not eligible and using a

previously eligible group as a control.

This result can be seen as a combination of ideas in Abadie [2003] and in Athey and Imbens

[2006]. To recover the distribution of Y (1) among compliers of the period 1 × treatment group cell, I

consider the distribution of wages among all treated observations in this cell. Since those observations

include both compliers and always takers, I need to �withdraw� from it the distribution of wages

among always takers. This is the same idea as in the �weighting� scheme suggested by Abadie to

recover statistical characteristics of compliers (see Abadie [2003], and Frölich and Melly [2008] for an

application to unconditional quantiles). But Abadie and Frölich and Melly have in mind applications

to randomized experiments, where the distribution of wages among always takers can be recovered from

the distribution of wages among treated observations in the control group due to random assignment.

Here, groups are not random. Therefore, I use distributions of wages among always takers in the

three remaining cells to reconstruct the distribution of Y (1) among always takers of the period 1 ×

treatment group cell through the same double-matching process as in Athey and Imbens. Those three

distributions are observed since by de�nition observations which completed highschool in the three

remaining cells must be always takers. Period 0 always takers in the treatment and in the control

group are matched on their wages. Since they have the same treatment status, are observed at the

same period and have the same wage, they must have the same U . Then, period 0 and 1 always
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takers in the control group are matched on their quantile. This will yield couples of observations with

same U since the distribution of U among always takers in the control group is the same in period

0 and 1, hence the need to assume that the share of treated observations is stable across periods in

the control group. Finally, the period 0 × treatment group always takers is matched to his period 1

× control group counterpart. To recover the distribution of Y (0) among compliers of the period 1 ×

treatment group cell, I also proceed in two steps. First, I reconstruct the distribution of Y (0) among

compliers and never takers of this cell from distributions of Y (0) among untreated observations in the

three remaining cells. Then, I �withdraw� from this reconstructed distribution the distribution of Y (0)

among never takers (i.e. untreated observations) of the period 1 × treatment group cell.

Finally, I show that in applications where the share of treated observations also increases in the

control group, partial identi�cation of the distributions of Y (1) and Y (0) among compliers of the period

1 × treatment group cell is obtained through a strengthening of IV-CIC assumptions. This result will

yield tight bounds in applications where the change in the treatment rate in the control group is small.

Therefore, the second contribution of this paper is to derive identi�cation results inspired from the

CIC model which allow computing or bounding quantile treatment e�ects in fuzzy applications. In

applications with never takers but no always takers, and in applications with potentially large shares

of always takers but where the share of treated observations remained stable between period 0 and 1

in the control group, exact identi�cation is obtained. In applications with few always takers or where

the share of treated observations does not increase much in the control group, tight bounds on quantile

treatment e�ects are obtained.

The remainder of the paper is divided into two parts. The �rst part deals with fuzzy DID. Section 1

is devoted to fuzzy DID identi�cation results. Section 2 considers inference. Section 3 is devoted to the

application. Then, the second part deals with fuzzy CIC. Section 4 presents fuzzy CIC identi�cation

results. The last section concludes.
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Part I

Fuzzy Di�erence in Di�erences

1 Identi�cation

I place myself in the pooled cross-section case: each individual is observed only at one period. Let

T ∈ {t0; t1} denote time and G ∈ {gc; gt} denote treatment (gt) and control (gc) groups. I assume

that treatment status is binary and is denoted by an indicator D (results can easily be extended when

treatment is discrete).

Throughout the paper it is implicitly assumed that the stable unit treatment value assumption holds.

Under this assumption I de�ne Y (1) and Y (0) as the potential outcomes of an individual with and

without the treatment. Only the actual outcome Y = Y (1) × D + Y (0) × (1 − D) is observed. The

treatment e�ect is Y (1)−Y (0). Average treatment e�ects are the corresponding expectations. X ∼ Y

means that X and Y have the same probability distribution. X is the support of X. To alleviate the

notational burden, I introduce several shorthands following Athey and Imbens [2006]:

Yij(k) ∼ Y (k) | t = i, g = j ∀(k, i, j) ∈ {0; 1} × {t0; t1} × {gc; gt}

Yij ∼ Y | t = i, g = j ∀(i, j) ∈ {t0; t1} × {gc; gt}

Dij ∼ D | t = i, g = j ∀(i, j) ∈ {t0; t1} × {gc; gt}

Under those notations, the standard DID parameter is:

DID = E(Yt1,gt)− E(Yt0,gt)− [E(Yt1,gt)− E(Yt0,gc)] .

I denote by DIDP the DID on treatment rate from period 0 to 1 across the two groups. I assume

that DIDP 6= 0: the de�nition of a fuzzy DID is that exposure to treatment should have evolved

di�erentially in the two groups. Without loss of generality, I assume that DIDP > 0. The no always

takers special case is met when P(Dt0,gt = 1) = P(Dt1,gc = 1) = P(Dt0,gc = 1) = 0. It is likely

to arise for instance when a new social program is implemented with only a speci�c group eligible
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to it (unemployed...) and take-up is below 100%. ATTi,j = E(Yi,j(1) − Yi,j(0)|D = 1), ∀(i, j) ∈

{t0; t1} × {gc; gt} is the average treatment e�ect on treated individuals of group j in period i. ATT =

E(Y (1) − Y (0)|D = 1) is the average treatment e�ect on the treated. I denote PAT = P(Dt0,gt =

1) + P(Dt1,gc = 1) + P(Dt0,gc = 1) the sum of the three shares of always takers.

I take a common trend assumption which is at the basis of the DID approach (see for instance

Abadie [2005]):

Assumption DID 1: Common trend for the outcome variable

E(Yt1,gt(0))− E(Yt0,gt(0)) = E(Yt1,gc(0))− E(Yt0,gc(0)).

Lemma DID 1: Non-identi�cation.

Under Assumption DID 1, none of the ATTi,j is identi�ed and

DID = ATTt1,gt × P(Dt1,gt = 1)−ATTt0,gt × P(Dt0,gt = 1)

−ATTt1,gc × P(Dt1,gc = 1) +ATTt0,gc × P(Dt0,gc = 1). (1)

According to Lemma DID 1, under Assumption DID 1, if compliance is imperfect, the DID on

Y can be written as a weighted DID of four average treatment e�ects on four di�erent populations.

This is the equation with several unknowns mentioned in the introduction. Because two ATT enter

the equation with positive sign and two enter with negative sign, the DID cannot be given any causal

interpretation. It might for instance be positive whereas the four ATT are negative. The intuition

for this result is that under common trend on Y (0), if no observations had been treated in any of the

four time × group cells, trends would have been parallel in the two groups and the DID would have

merely been equal to 0. In a standard DID, the only reason why trends might diverge across groups is

that observations in the treatment group get treated in period 1, so that the DID measures the e�ect

of the treatment on them. In a fuzzy DID, since there might be treated observations in several time

× group cells, diverging trends can potentially arise from the e�ect of the treatment in each of those

cells. Then, if no restrictions are placed on how heterogeneous the treatment e�ect can be across these
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four subgroups, it is not possible to identify any of the ATTi,j from a standard DID computation,

since it yields one equation with several unknowns.

Proposition DID 1: Point identi�cation.

i) In the no always takers special case, Assumption DID 1 is su�cient for ATTt1,gt to be identi�ed and

ATTt1,gt =
DID

P(Dt1,gt = 1)

ii) Under Assumption DID 1 and the supplementary assumption that ∀(i, j) ∈ {t0; t1}×{gc; gt} , ATTi,j =

ATT , the ATTi,j and the ATT are identi�ed:

∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATT =
DID

DIDP

In the no always takers special case, common trend is su�cient to identify ATTt1,gt as in a standard

DID because there are treated observations in one group only. Therefore, there is only one unknown

left in (1). This result is strikingly similar to Battistin and Rettore's [2008] result on regression

discontinuity (RDD). They indeed show that in a fuzzy RDD, when treatment rate is equal to 0 below

the eligibility threshold, so that fuzziness arises only because of never takers (i.e. untreated individuals

above the threshold), identi�cation is obtained under the same assumptions than in a sharp RDD.

Estimation of ATTt1,gt still requires being able to estimate P(Dt1,gt = 1). Sometimes treatment status

is not observed, making it impossible to estimate P(Dt1,gt = 1) (see e.g. Eissa and Leibman [1996]).

Since ATTt1,gt and DID have the same sign and |DID| ≤ |ATTt1,gt |, it is at least possible to estimate

a lower bound of ATTt1,gt by computing the DID. For instance, Eissa and Leibman's 1.4 percentage

points DID is a lower bound on the true e�ect of the EITC extension on lone mothers' participation

to the labor market.

Then in part ii) of Proposition DID 1, I show that it is enough to restrict the heterogeneity of

the treatment e�ect, assuming that it does not vary across time and group, to identify exactly the

ATT . This is because under this assumption the four unknowns in (1) are actually equal to each other.

But this is fairly restrictive an assumption. The underlying assumption to a fuzzy DID is indeed that

treatment rate increased more from period 0 to 1 in the treatment group than in the control group.
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This might for instance be the case because treatment group individuals were more incentivized to

receive the treatment in period 1 than in period 0. Inside the treatment group, treated individuals

during period 1 are therefore likely to di�er from those treated during period 0 so that the average

treatment e�ect could arguably be di�erent in these two groups.

Before stating Proposition DID 2, I de�ne three quantities:

B0(u, v) =
DID+(E(Yt0,gt |D=1)−u)×P(Dt0,gt=1)+(E(Yt1,gc |D=1)−u)×P(Dt1,gc=1)−(E(Yt0,gc |D=1)−v)×P(Dt0,gc=1)

P(Dt1,gt=1) ,

B1 =
DID+(E(Yt0,gt |D=1)−M)×P(Dt0,gt=1)+(max(E(Yt1,gc |D=1);E(Yt0,gc |D=1))−M)×(P(Dt1,gc=1)−P(Dt0,gc=1))

P(Dt1,gt=1)

and

B2 =
DID+(E(Yt0,gt |D=1)−m)×P(Dt0,gt=1)+(min(E(Yt1,gc |D=1);E(Yt0,gc |D=1))−m)×(P(Dt1,gc=1)−P(Dt0,gc=1))

P(Dt1,gt=1) .

Proposition DID 2: Partial Identi�cation.

i) Under Assumption DID 1 and the supplementary assumption that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤

M) = 1,

B− ≤ ATTt1,gt ≤ B+.

B− = max
(
B0(M,m) ; E(Yt1,gt |D = 1)−M

)
and B+ = min

(
B0(m,M) ; E(Yt1,gt |D = 1)−m

)
,

B− and B+ are sharp.

PAT ≤ P(Dt1,gt = 1) is a su�cient condition to have that either B− = B0(M,m) or B+ = B0(m,M).

ii) Under Assumption DID 1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤

M) = 1 and that ATTt1,gc = ATTt0,gc ,

B
′
− ≤ ATTt1,gt ≤ B

′
+

B
′
− = max

(
min(B1 ; B2) ; E(Yt1,gt |D = 1)−M

)
and

B
′
+ = min

(
max(B1 ; B2) ; E(Yt1,gt |D = 1)−m

)
.

B
′
− and B

′
+ are sharp.

P(Dt0,gt = 1) + |P(Dt1,gc = 1)− P(Dt0,gc = 1)| ≤ P(Dt1,gt = 1) is a su�cient condition to have that

either B
′
− = min(B1 ; B2) or B

′
+ = max(B1 ; B2).

If Y (0) is bounded, it is possible to �nd bounds for ATTt1,gt which can be non-parametrically

estimated from the sample in the spirit of Manski [1990]. This comes from the fact that the only three
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quantities appearing in (1) which are not observed and do not belong toATTt1,gt are E(Yt0,gt(0)|D = 1),

E(Yt1,gc(0)|D = 1) and E(Yt0,gc(0)|D = 1). Therefore, it su�ces to build up worst-case scenarii for

each of them to derive bounds for ATTt1,gt . But those worst case scenarii might not be compatible

with the common trend assumption and might therefore yield values lower (resp. higher) than the

lowest (resp. highest) possible value for ATTt1,gt compatible with the data, i.e. E(Yt1,gt |D = 1)−M

(resp. E(Yt1,gt |D = 1) − m). Hence the need to ensure that B− ≥ E(Yt1,gt |D = 1) − M and

B+ ≤ E(Yt1,gt |D = 1)−m. If B− = E(Yt1,gt |D = 1)−M and B+ = E(Yt1,gt |D = 1)−m, the bounds

are uninformative. If PAT ≤ P(Dt1,gt = 1), that is to say if the share of treated observations in the

period 1 × treatment group cell is greater than the shares of always takers, at least one of the bounds

is informative. Conversely, when PAT > P(Dt1,gt = 1), at least one of the bounds in uninformative.

There is no su�cient condition on PAT which ensures that the two bounds are informative (except

PAT = 0), because even when PAT is very small, it is still possible to build up a DGP such that

one of the bounds is uninformative, for instance setting E(Yt0,gt(0)|D = 1) = M . Apart from such

extreme cases, if PAT ≤ P(Dt1,gt = 1), it is likely that the two bounds will be informative. This

condition appears because PAT is the �size� of the three subgroups for which Y (0) is not observed,

which enter into (1), and for which worst case scenarii must be constructed. P(Dt1,gt = 1) is the size of

the only subgroup for which Y (0) is not observed, which enters the common trend equation and does

not enter into (1), that is to say the size of the only degree of freedom left to verify common trend

once worst case scenarii have been constructed for the three groups of always takers. When the two

bounds are informative, the length of [B−;B+] is equal to (M −m)× PAT
P(Dt1,gt=1) . It is increasing with

PAT , and decreasing with P(Dt1,gt = 1). However, whether 0 belongs to [B−;B+] does not depend

on P(Dt1,gt = 1) but on the size of DID with respect to M −m, , P(Dt0,gt = 1), P(Dt1,gc = 1), and

P(Dt0,gc = 1).

In part ii) of Proposition DID 2 I show that narrower bounds for ATTt1,gt can be derived under

the supplementary assumption that the ATT is constant over time in the control group.3 Such an

assumption might be credible for instance when the treatment rate does not signi�cantly change

between period 0 and 1 in the control group, when observable characteristics of treated individuals

3I am very grateful to Roland Rathelot for suggesting this result.
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in the control group do not change much over the two periods, or when E(Yt1,gc |D = 1) is close

from E(Yt0,gc |D = 1). Under this hypothesis, (1) becomes an equation with only three unknowns,

and worst case analysis must be conducted on only two expectations. Those worst case scenarii

might also not be compatible with common trend and may therefore yield lower and upper bounds

outside the range of values of ATTt1,gt compatible with the data, hence the need to ensure that

B
′
− ≥ E(Yt1,gt |D = 1)−M and B

′
+ ≤ E(Yt1,gt |D = 1)−m for the bounds to be sharp. If P(Dt0,gt =

1)+ |P(Dt1,gc = 1)− P(Dt0,gc = 1)| ≤ P(Dt1,gt = 1), at least one of the two bounds will be informative.

The sign of ATTt1,gt will be identi�ed if both P(Dt0,gt = 1) and |P(Dt1,gc = 1)− P(Dt0,gc = 1)| are

small. With respect to part i) of the Proposition, P(Dt1,gc = 1) + P(Dt0,gc = 1) has been replaced by

|P(Dt1,gc = 1)− P(Dt0,gc = 1)|: what matter are no longer the shares of treated observations in the

control group but the change in this share from period 0 to 1. This is somewhat similar to the change in

the size of the identi�cation region when Lee bounds (see Lee [2009] and Horowitz and Manski [1995])

are used to deal with attrition instead of Manski bounds. This result is of particular interest to place

narrow bounds on the ATT in applications considering the extension of policy to a group which was

previously not eligible to it and which use a group previously eligible as the control group. Indeed, in

such cases, P(Dt0,gt = 1) = 0. Consequently, if the change in the treatment rate from period 0 to 1 in

the control group is not too large,
[
B
′
−;B

′
+

]
will be narrow. Point identi�cation can even be obtained

if P(Dt1,gc = 1) = P(Dt0,gc = 1).

2 Inference

The objective of this section is to build up con�dence intervals (CI) for ATTt1,gt based upon the

identi�cation results of section 2. I denote LBθ
x and UBθ

x the lower and upper bounds of the CI of a

parameter θ with x% asymptotic coverage. A �rst candidate is CI1 =
[
LB

DID

DIDP

(1−α) ;UB
DID

DIDP

(1−α)

]
. In the no

always takers special case, common trend is enough for CI1 to be a consistent CI for ATTt1,gt , since

ATTt1,gt = DID
DIDP

. But when there are always takers, CI1 is a CI for ATTt1,gt (i.e. ATTt1,gt = DID
DIDP

)

only under the very strong assumption that ATT do not vary across time × group cells. In such cases,

partial identi�cation results might allow deriving CI for ATTt1,gt under weaker assumptions. This is

the purpose of Proposition DID 3.
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Proposition DID 3: CI for ATTt1,gtbased on partial identi�cation results

i) Under Assumption DID 1 and the supplementary assumption that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤

M) = 1, CI2 =
[
LB

B−
(1−α);UB

B+

(1−α)

]
and CI3 =

[
LB

B−
(1−2α);UB

B+

(1−2α)

]
are CI for ATTt1,gt with

asymptotic coverage of (1− α)%.

ii) Under Assumption DID 1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤

M) = 1 and that ATTt1,gc = ATTt0,gc, if either P(Dt1,gc = 1)−P(Dt0,gc = 1) 6= 0 or P(Dt0,gt = 1) 6= 0,

then

CI4 =
[
LB

B
′
−

(1−α);UB
B
′
+

(1−α)

]
and CI5 =

[
LB

B
′
−

(1−2α);UB
B
′
+

(1−2α)

]
are CI for ATTt1,gt with asymptotic

coverage of (1− α)%.

Based on the �rst partial identi�cation result in Proposition DID 2, one can build a CI for

ATTt1,gt with (1− α)% asymptotic coverage using the lower bound of the (1− α)% CI of B− and the

upper bound of the (1 − α)% CI of B+. This yields CI2. As shown in Imbens and Manski [2004],

using (1 − 2α)% lower and upper bounds will also yield a CI for ATTt1,gt with (1 − α)% asymptotic

coverage. This is CI3. However, it su�ers from uniform convergence issues: when we get close to

point identi�cation (PAT → 0), CI3 will be narrower than CI1 despite the fact that it is based on a

partial identi�cation result whereas CI1 relies on point identi�cation and stronger assumptions. To

circumvent this issue, Imbens and Manski introduce a third CI lying in-between the (1−α)% and the

(1− 2α)% CI. It accounts for the fact that because the parameter is partially identi�ed, the (1− α)%

CI is too conservative and also avoids the above mentioned uniform convergence issue. Stoye [2009]

shows that this third CI relies on a supere�ciency condition which is veri�ed when by construction

B̂− ≤ B̂+ and when

√
n

 B̂− −B−

B̂+ −B+

 d→ N (0,Σ)

uniformly in P. While the former is true here, the latter is not as shown in Proposition DID 4.

Therefore, this third CI cannot be used here.

Finally, based on the second identi�cation result in Proposition DID 2 which relies on stronger

identifying assumptions, one can use B
′
− and B

′
+ instead of B− and B+ to build up CI for ATTt1,gt .

Using the lower bound of the (1−α)% CI of B
′
− and the upper bound of the (1−α)% CI of B

′
+ yields
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CI4. Using the corresponding (1− 2α)% bounds yields CI5.

Proposition DID 3 shows how to build up CI for ATTt1,gt based upon CI for B−, B+, B
′
− and

B
′
+. I show now how to construct such CI for B− and B+. Let (Yi, Di, Ti, Gi)1≤i≤n be an iid sample

of size n drawn from the distribution of (Y, D, T, G). I assume that P(T = i, G = j) > 0 ∀(i, j) ∈

{t0; t1} × {gc; gt} and that Y is bounded, meaning that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1, where

m and M are known by the econometrician. Empirical counterparts are used to estimate B− and

B+. I consider the asymptotic behavior of B̂− and B̂+. On that purpose, I de�ne a variance matrix

Σ =

 σ2
1 ρ

ρ σ2
2

 whose explicit expression is given in Appendix B and which can be consistently

estimated by Σ̂.

Proposition DID 4:
√
n-consistency of B̂− and B̂+.

If B0(M,m) > E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
d→ N (0, σ2

1).

If B0(M,m) = E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
d→ S1

where S1 = max
(
N1;N2

)
with

(
N1 N2

)′
∼ N (0,Σ).

If B0(M,m) < E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
d→ N (0, σ2

2).

Similarly one can show that B̂+ is
√
n-consistent with three possible limiting distributions depending

on the respective positions of B0(m,M) and E(Yt1,gt |D = 1)−m.

B− is not di�erentiable at B0(M,m) = E(Yt1,gt |D = 1) −M and B+ is not di�erentiable at

B0(m,M) = E(Yt1,gt |D = 1) −m. Therefore,
√
n
(
B̂− −B−

)
and
√
n
(
B̂+ −B+

)
do not converge

to a normal distribution uniformly in P. If B0(M,m) > E(Yt1,gt |D = 1) − M ,
√
n
(
B̂− −B−

)
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converges to a normal distribution. If B0(M,m) < E(Yt1,gt |D = 1) − M , it converges to another

normal distribution. If B0(M,m) = E(Yt1,gt |D = 1)−M , its limiting distribution is non standard.

In all cases, it is possible to build CI for B− and B+. Let us consider B− (the reasoning

follows the same steps for B+). If B0(M,m) > E(Yt1,gt |D = 1) − M , a CI for B− is CIA =[
̂B0(M,m)−

q1−α2
×σ̂2

1√
n

; ̂B0(M,m) +
q1−α2

×σ̂2
1√

n

]
, where q1−α

2
is the 1 − α

2
th quantile of a N (0, 1) dis-

tribution. If B0(M,m) = E(Yt1,gt |D = 1)−M , a CI for B− is CIB =
[
B̂− +

q̃α
2√
n

; B̂− +
q̃1−α2√

n

]
, where

q̃α
2
and q̃1−α

2
are the α

2
th and 1− α

2
th quantiles of S̃1 = max

(
N1;N2

)
with

(
N1 N2

)′
∼ N

(
0, Σ̂

)
.

Finally, if B0(M,m) < E(Yt1,gt |D = 1)−M , a CI for B− is

CIC =

[
Ê(Yt1,gt |D = 1)−M −

q1−α2
×σ̂2

2√
n

; Ê(Yt1,gt |D = 1)−M +
q1−α2

×σ̂2
2√

n

]
.

But B0(M,m) and E(Yt1,gt |D = 1) −M are unknown, hence the need to �nd CI with (1 − α)%

asymptotic coverage irrespective of their respective position. This is achieved by choosing CIA when

̂B0(M,m) is more than ln(n)√
n

above Ê(Yt1,gt |D = 1)−M , CIB when ̂B0(M,m) is less than ln(n)√
n

away

from Ê(Yt1,gt |D = 1)−M , and CIC when ̂B0(M,m) is more than ln(n)√
n

below Ê(Yt1,gt |D = 1)−M4.

The reason why this decision rule yields a CI with (1−α)% asymptotic coverage uniformly in B0(M,m)

and E(Yt1,gt |D = 1)−M is that since 1√
n

= o
(
ln(n)√
n

)
, the probability to pick the �wrong� CI converges

to 0.

Proposition DID 5: CI for B̂− and B̂+ with uniform asymptotic coverage

CI = CIA × 1{Ê(Yt1,gt |D=1)−M+
ln(n)√
n
< ̂B0(M,m)

}

+CIB × 1{Ê(Yt1,gt |D=1)−M− ln(n)√
n
≤ ̂B0(M,m)≤Ê(Yt1,gt |D=1)−M+

ln(n)√
n

}
+CIC × 1{ ̂B0(M,m)+

ln(n)√
n
<Ê(Yt1,gt |D=1)−M

}
is a CI for B− with (1− α)% asymptotic coverage uniformly in B0(M,m) and E(Yt1,gt |D = 1)−M .

A CI for B+ with (1− α)% asymptotic coverage uniformly in B0(m,M) and E(Yt1,gt |D = 1)−m can

be constructed following the same steps.

4Instead of ln(n), one can choose whatever sequence un such that un → +∞ and un√
n
→ 0
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Let us now consider B
′
− and B

′
+. As in Proposition DID 4, one can show that whatever the value of

P(Dt1,gc = 1)−P(Dt0,gc = 1), E(Yt1,gc |D = 1)−E(Yt0,gc |D = 1), min(B1 ; B2)−E(Yt1,gt |D = 1)−M

and max(B1 ; B2) − E(Yt1,gt |D = 1) − m, B̂
′
− and B̂

′
+ are

√
n-consistent, with standard normal

limiting distributions when those four quantities are di�erent from 0, and with non standard limiting

distributions when one of them quantities is equal to 0. It is also possible to derive CI for B− and B+

with (1−α)% asymptotic coverage irrespective of the value of those four unknown quantities. Because

both B′− and B′+ are not di�erentiable at 3 points, careful analysis of their limiting distribution requires

distinguishing 27 cases. Similarly, the construction of uniform CI for B
′
− and B

′
+ involves 27 auxiliary

CI. Due to a concern for brevity, the two corresponding propositions are not presented here.

3 Application to the impact of varenicline on smoking cessation.

3.1 Data and methods

I use the data base of French smoking cessation clinics participating in the �Consultation Dépen-

dance Tabagique� program (hereafter referred to as CDT). This program started in 2001 and led to

the progressive implementation of smoking cessation services nationwide. During patients' �rst visit,

smoking status is evaluated according to daily cigarettes smoked and a measure of expired carbon

monoxide (CO) which is a biomarker for recent tobacco use. At the end of this �rst visit, treatments

may be prescribed to patients (nicotine replacement therapies. . . ). Follow-up visits are o�ered during

which CO measures are usually made to validate tobacco abstinence.

Varenicline is a pharmacotherapy for smoking cessation support which was made available to

these centers in February 2007. 59 services recorded at least one patient per year in 2006 and 2007

and followed at least 50% of their patients. The kernel density estimate of the rate of prescription

of varenicline per center is shown in Figure 1. It is bimodal, with a �rst peak at very low rates of

prescription, and a second smaller peak around 35-40%. In 15 services, less than 3% of all patients

consulted have been prescribed varenicline during the year following its release. In 13 services, more

than 20% of patients were prescribed varenicline. I exploit this to estimate the impact of varenicline

on smoking cessation through a fuzzy DID identi�cation strategy. The control group is made up
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of patients registered by the 15 �below 3% prescription rate� services, whereas the treatment group

consists of patients recorded by �above 20% prescription rate� centers. Period 0 goes from February

2006 to January 2007, and period 1 from February 2007 to January 2008.

[Figure 1 inserted here]

8 581 patients consulted those 28 services over period 0 and 1. Because many patients never

came back for follow-up visits, there are only 5 299 patients (62% of the initial sample) for whom

follow-up CO measures are available. I exclude patients for whom no such measures are available from

the analysis. Among remaining patients, which I refer to as the included sample, I compute a point

prevalence abstinence rate, that is to say the share of patients whose last follow-up CO determination

was inferior or equal to 5 parts per million (ppm).

3.2 Results

In Table 1, I provide descriptive statistics on patients per group of centers and per period of time.

Patients consulted in those cessation services are middle-aged, rather educated and the majority of

them are employed. They are very heavy smokers since they smoke more than 21.6 cigarettes per day

on average, which corresponds to the 90th percentile in the French distribution of smokers (Beck et

al. [2007]). 17% of them su�er from chronic obstructive pulmonary diseases (COPD) and more than

30% su�er from tobacco related diseases (lung cancer, COPD...). They have therefore been classi�ed

as �hardcore� addicts in the medical literature.

[Table 1 inserted here]

In period 0, the prescription rate of varenicline was equal to 0% in control centers and to 0.01%

in treatment centers (varenicline was prescribed to 6 patients recorded in the last week of January

2007, that is to say right before the release of varenicline). In period 1, it was equal to 1.6% in control

centers and to 38.2% in treatment centers. This sharp rise in varenicline prescription in treatment

centers entailed a strong decrease in the prescription of other treatments such as nicotine patch.

Finally, from period 0 to 1, the point prevalence abstinence rate increased (from 53.7% to 56.9%) in
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treatment centers, whereas it decreased (from 46.6% to 41.6%) in control centers. Among treatment

patients prescribed varenicline in period 0, abstinence rate was equal to 50.0%. Among control patients

prescribed varenicline in period 1, abstinence rate was equal to 58.3%. Applying the formulas of

section 2, I compute that B̂− = 19.1% (P-value = 0.008) and B̂+ = 24.5% (P-value = 0.001). Finally,

D̂ID

D̂IDP
= 22.7% (P-value=0.003).

̂B0(M,m) is higher than Ê(Yt1,gt |D = 1) − 1 − ln(5299)√
5299

, and ̂B0(m,M) + ln(5299)√
5299

is lower than

Ê(Yt1,gt |D = 1). Consequently, the CI to be used for B− and B+ are CIA (see Proposition DID

5). Then, using Proposition DID 3, I construct 3 CI for ATTt1,gt : CI
1 =

[
LB

DID

DIDP

95 ;UB
DID

DIDP

95

]
=

[7.8%; 37.5%], CI2 =
[
LB

B−
95 ;UBB+

95

]
= [5.0% : 38.6%], CI3 =

[
LB

B−
90 ;UBB+

90

]
= [7.3% : 36.3%]. The

uniform convergence issue mentioned in Imbens and Manski [2004] shows up here since CI3 is shorter

than CI1. But here even CI2 is enough to infer the sign of ATTt1,gt .

Point identi�cation of ATTt1,gt relies on a strong constant treatment e�ect assumption whereas

identi�cation of [B−; B+] is obtained under much weaker assumptions. Moreover, inference on B̂−

is su�cient to draw inference on the sign of ATTt1,gt . Finally, even using CI2, inference on B̂− and

B̂+ yields a 95% CI for ATTt1,gt which is only slightly broader than the one obtained when drawing

inference on D̂ID

D̂IDP
. Therefore, one might consider that here, the parameters which achieve the best

trade-o� between the accuracy of the information they deliver and the identifying assumptions on

which they rely are B̂− and B̂+ and not D̂ID

D̂IDP
.

3.3 Robustness checks

The only substantial assumption which is needed to identify [B−; B+] is the common trend

assumption. To �test� it, I use the fact that I have several years of data available and I compute placebo

DID from 2003 to 2008. They are displayed in the top panel of Table 2 along with their P-values.

Only the 2006-2007 DID is signi�cant, which gives some credit to the common trend assumption. I

also compute 2006-2007 placebo DID on 9 patients' observable characteristics. They are also displayed

in Table 2. This test is less conclusive since 2 DID out of 9 are signi�cantly di�erent from 0 at the

95% level. For instance, daily cigarettes smoked increased by 1.45 more among treatment centers' than

among control centers' patients from 2006 to 2007. Similarly, the percentage of patients su�ering from
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COPD increased by 4.4 percentage points more in treatment than in control services. This might cast

some doubt on the validity of the common trend assumption. However, the P-value obtained on the

DID of percentage of successful quits from 2006 to 2007 is still the lowest by far out of the 14 DID

computed in Table 2. Moreover, high number of daily cigarettes smoked and COPD are predictors of

unsuccessful quits. Since my fuzzy DID identi�cation strategy does not correct for diverging trends on

those variables, it might underestimate the true e�ect of varenicline.

Attrition seems orthogonal to the interaction of period 1 and treatment centers, since the DID

computed on the percentage of patients included is low and insigni�cant (+2.2%, P-value = 0.30).

Therefore, estimates do not seem contaminated by attrition bias. However, the delay between patients'

�rst visit and the last CO measure available increased more in treatment than in control clinics. This

is very likely to be because varenicline being a newly released drug with more severe secondary e�ects

than nicotine patch, doctors put more e�ort in following their patients over a longer period of time

to ensure they tolerate it well. Anyway, since smoking cessation is known to be a �duration� type

of process, observing patients over a longer period of time in period 1 than in period 0 in treatment

clinics can only bias downward my estimate.

Finally, one might worry about the arbitrariness of the de�nition of my treatment and control

groups which is not based on some objective characteristic of cessation services. I investigate the

sensitivity of the results to the 3%-20% rule as a robustness check. I ran the same analysis with 9

di�erent pairs of thresholds and always got B̂− ≥ 0 with 6 P-values lower than 0.05. The results of

this last robustness check are displayed in the bottom panel of Table 2.

[Table 2 inserted here]
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Part II

Fuzzy Change in Change

4 Identi�cation

4.1 Identi�cation under CIC assumptions

I place myself in the pooled cross-section case: each individual is observed only at one period. Let

T ∈ {t0; t1} denote time and G ∈ {gc; gt} denote treatment (gt) and control (gc) groups. I assume that

treatment status is binary and is denoted by an indicator D. Throughout the paper it is implicitly

assumed that the stable unit treatment value assumption holds. Under this assumption I de�ne Y (1)

and Y (0) as the potential outcomes of an individual with and without the treatment. Only the actual

outcome Y = Y (1) ×D + Y (0) × (1 −D) is observed. The treatment e�ect is Y (1) − Y (0). X ∼ Y

means that X and Y have the same probability distribution. X is the support of X. To alleviate the

notational burden, I introduce several shorthands following Athey and Imbens [2006]:

Yt,g(k) ∼ Y (k) |T = t, G = g ∀(t, g, k) ∈ {t0; t1} × {gc; gt} × {0; 1}

Yt,g ∼ Y |T = t, G = g ∀(t, g) ∈ {t0; t1} × {gc; gt}

Dt,g ∼ D |T = t, G = g ∀(t, g) ∈ {t0; t1} × {gc; gt}

Let FX and FX|Y denote respectively the cumulative distribution function (cdf) of a random

variable X and the cdf of X conditional on Y . Let F−1
X denote the inverse cdf of X. The standard

de�nition of F−1
X (q) is ∀q ∈ [0; 1] , F−1

X (q) = inf {x ∈ X/FX(x) ≥ q}.

Athey and Imbens take the following assumptions:

Assumption CIC 1: Model

∀k ∈ {0; 1} , Y (k) = hk(U, T ) where U represents individuals unobserved characteristics.

Assumption CIC 2: Strict monotonicity

∀k ∈ {0; 1} , ∀t ∈ {t0; t1} , hk(u, t) is strictly increasing in u.

Assumption CIC 3: Time invariance within groups
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U ⊥⊥ T |G

Assumption CIC 4: Support

U|G = gt ⊆ U|G = gc

Assumption CIC 5: Perfect compliance

D = 1⇐⇒ T ×G = {t1; gt}

Under those assumptions, they prove the following result:

Theorem 3.1, Athey and Imbens [2006]:

i) Under Assumption CIC 1 to Assumption CIC 4, if U is either continuous or discrete, then

FYt1,gt (0)(y) = FYt0,gt (0)

(
F−1
Yt0,gc (0)

(
FYt1,gc (0)(y)

))
.

Under Assumption CIC 1 to Assumption CIC 5, if U is either continuous or discrete,

ii) FYt1,gt (0)(y) is identi�ed:

FYt1,gt (0)(y) = FYt0,gt

(
F−1
Yt0,gc

(
FYt1,gc (y)

))
.

iii) E (Yt1,gt(1)− Yt1,gt(0)) is identi�ed:

E (Yt1,gt(1)− Yt1,gt(0)) = E (Yt1,gt)− E
(
F−1
Yt1,gc

(
FYt0,gc (Yt0,gt)

))
.

iv) ∀q ∈ [0; 1] , F−1
Yt1,gt (1)(q)− F

−1
Yt1,gt (0)(q) is identi�ed:

F−1
Yt1,gt (1)(q)− F

−1
Yt1,gt (0)(q) = F−1

Yt1,gt
(q)− F−1

Yt1,gc

(
FYt0,gc

(
F−1
Yt0,gt

(q)
))

.

Under Assumption CIC 5, the cdf of Y (0) in the period 1 × test group cell is not observed

because all observations of this cell are treated. But Theorem 3.1 states that it can be recovered

from three observable functions (FYt0,gt (.), F
−1
Yt0,gc

(.) and FYt1,gc (.)), making it possible to compute the

average treatment e�ect as well as quantile treatment e�ects within this cell. The intuition of this
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theorem is as follows. Take an observation in the period 0 × control group cell. Denote y its observed

outcome, q the quantile corresponding to y in the distribution of this cell, and u its realization of U .

By Assumption CIC 1 and Assumption CIC 5, y = h0(u, t0). Now consider the observation at the

qth quantile of the distribution of Y in the period 1 × control group cell, and denote y∗ its observed

outcome. Since the distribution of U is time invariant within group (Assumption CIC 3), those two

observations must have the same u. Therefore, y∗ = h0(u, t1), which means that the qth quantile

of the period 1 × control group cell identi�es the period 1 Y (0) of an observation with unobserved

heterogeneity u. Now consider an observation in the period 0 × test group cell with observed outcome

y. Since Y (0) only depends on time and unobserved heterogeneity (Assumption CIC 1) and since

h0(., t0) is invertible (Assumption CIC 2), it must have the same unobserved heterogeneity u than the

period 0 × control group observation. Thus for an observation of the test group with observed outcome

y in period 0 and unobserved heterogeneity u, it is possible to recover its period 1 Y (0): it is merely

equal to y∗. Therefore, to recover the whole counterfactual distribution of Y (0) in the period 1 × test

group cell, it su�ces to translate the whole distribution of Y in the period 0 × test group cell from y

to the corresponding y∗ for each value of y.

Part i) of their Theorem does not rely on Assumption CIC 5 whereas part ii) does, hence my

non-identi�cation Lemma:

Lemma CIC 1: Non-identi�cation.

Under Assumption CIC 1 to Assumption CIC 4, if U is either continuous or discrete, FYt1,gt (0)(y) is

not necessarily equal to FYt0,gt

(
F−1
Yt0,gc

(
FYt1,gc (y)

))
.

Assumption CIC 1 to Assumption CIC 4 are su�cient for part i) of Athey and Imbens's Theorem

to hold. It states that the cdf of Yt1,gt(0) can be recovered from the cdf of Yt0,gt(0) and Yt1,gc(0) and

from the inverse cdf of Yt0,gc(0). However, when compliance is imperfect, this might prove useless

since those functions may not be fully observed: only FYt0,gt (0)|D=0, FYt1,gc (0)|D=0 and F−1
Yt0,gc (0)|D=0

are observed. This is because two steps in the intuition of Theorem 3.1 collapse. First, two control

and test group observations with same y in period 0 might no longer have the same u, because one

might be untreated which means that y = h0(u0, t0), whereas the other is treated meaning that

y = h1(u1, t0). h0(u0, t0) = h1(u1, t0) does not imply u0 = u1. Then, two observations at the qth
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quantile of the distribution of Y in the control group in period 0 and in period 1 do not necessarily

have the same u. Indeed, if the treatment rate changed between the two periods in the control group

this could disrupt the ranking of observations. Assume for instance that Y are wages, D is secondary

education completion. If the share of observations completing secondary education increased in the

control group, then a period 1 untreated observation with the same rank in the wage distribution as

a period 0 untreated observation has probably a higher rank in the unobserved ability distribution.

Indeed, despite the fact that more of its counterparts are educated and therefore have an advantage on

the labor market, it has the same rank in the wage distribution. Despite this general non identi�cation

result I now state an identi�cation result. It holds in one important special case which is when there

are no always takers, that is to say when P(Dt0,gt = 1) = P(Dt1,gc = 1) = P(Dt0,gc = 1) = 0.

Theorem CIC 1: Point identi�cation in the no always takers special case

Let G(y) =
FYt0,gt

(
F−1
Yt0,gc

(
FYt1,gc

(y)
))
−FYt1,gt |D=0(y)×P(Dt1,gt=0)

P(Dt1,gt=1) . In the no always takers special case,

under Assumption CIC 1 to Assumption CIC 4:

i) FYt1,gt (0)|D=1 is identi�ed:

FYt1,gt (0)|D=1(y) = G(y)

ii) E (Yt1,gt(1)− Yt1,gt(0)|D = 1) is identi�ed:

τCIC = E (Yt1,gt(1)− Yt1,gt(0)|D = 1) =
E (Yt1,gt)− E

(
F−1
Yt1,gc

(
FYt0,gc (Yt0,gt)

))
P(Dt1,gt = 1)

iii) ∀q ∈ [0; 1] , F−1
Yt1,gt (1)|D=1(q)− F−1

Yt1,gt (0)|D=1(q) is identi�ed:

τCICq = F−1
Yt1,gt (1)|D=1(q)− F−1

Yt1,gt (0)|D=1(q) = F−1
Yt1,gt |D=1(q)− inf {y ∈ Yt1,gc/G(y) ≥ q}

Theorem CIC 1 holds because in the no always takers special case, FYt0,gt = FYt0,gt (0) , FYt1,gc =

FYt1,gc (0) and F
−1
Yt0,gc

= F−1
Yt0,gc (0). Consequently, all the functions required to recover the cdf of Yt1,gt(0)

from Athey and Imbens's Theorem 3.1 are fully observed. Indeed, in the previous lemma, the fact

that some period 0 observations could potentially be treated made it impossible to match treatment

and control observations on their Y . Moreover, a change in the treatment rate in the control group

27



could have disrupted the ranking of control observations between the two periods. But since in the

no always takers case, no one gets treated in period 0 and in the two control cells, the CIC double

matching process is su�cient to reproduce FYt1,gt (0)(y), the distribution of Y (0) within the period 1

× test group cell. Since FYt1,gt (0)|D=0(y) is observed, subtracting it to FYt1,gt (0)(y) allows recovering

FYt1,gt (0)|D=1(y). Consequently, since FYt1,gt (1)|D=1(y) is observed, it is possible to identify the average

treatment e�ect on the treated and quantile treatment e�ects.

Even though when there are always takers CIC assumptions are not su�cient for identi�cation,

I show now that they are still su�cient to place bounds on FYt1,gt (0)|D=1(y) and therefore on τCIC

and τCICq (due to a concern for brevity I give explicit formulas for bounds on FYt1,gt (0)|D=1(y) only).

Those bounds will be tight in applications with small shares of observations treated within the three

remaining cells.

Proposition CIC 1: Partial Identi�cation in the CIC model.

Under Assumption CIC 1 to Assumption CIC 4,

BCIC
− ≤ FYt1,gt (0)|D=1(y) ≤ BCIC

+

with

BCIC
− =

FYt0,gt |D=0

(
F−1
Yt0,gc

|D=0

(
FYt1,gc

|D=0(y)×P(Dt1,gc
=0)−P(Dt0,gc

=1)

P(Dt0,gc
=0)

))
×P(Dt0,gt=0)−FYt1,gt |D=0(y)×P(Dt1,gt=0)

P(Dt1,gt=1)

and

BCIC
+ =

FYt0,gt |D=0

(
F−1
Yt0,gc

|D=0

(
FYt1,gc

|D=0(y)×P(Dt1,gc
=0)+P(Dt1,gc

=1)

P(Dt0,gc
=0)

))
×P(Dt0,gt=0)+P(Dt0,gt=1)−FYt1,gt |D=0(y)×P(Dt1,gt=0)

P(Dt1,gt=1) .

The bounds are obtained as follows. Athey and Imbens's Theorem 3.1 states that the cdf

of Yt1,gt(0) can be recovered from the cdf of Yt0,gt(0) and Yt1,gc(0), and from the inverse cdf of

Yt0,gc(0). When there are always takers, those three functions are not fully observed: only FYt0,gt (0)|D=0,

FYt1,gc (0)|D=0 and F−1
Yt0,gc (0)|D=0 are observed. But the cdf of Yt1,gt(0), can be bounded placing bounds

on FYt0,gt (0)|D=1, FYt1,gc (0)|D=1 and F−1
Yt0,gc (0)|D=1. The length of

[
BCIC
− ;BCIC

+

]
is increasing with

P(Dt0,gc = 1), P(Dt1,gc = 1), and P(Dt0,gt = 1). It is decreasing with P(Dt1,gt = 1). This is is very

similar to the result obtained with fuzzy DID.
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4.2 Identi�cation in the IV Change in Change model

To deal with applications with potentially large share of always takers, I give a second identi�cation

result. It requires that the share of treated observations remained approximately constant between

period 0 and 1 in the control group. Under this last assumption, one can indeed assume that unobserved

heterogeneity of treated and untreated observations in the control group did not change between

period 0 and 1 since within that group selection into treatment seems to have remained constant over

time. This result also requires assuming that within the test group, the share of treated observations

increased because of a policy change, or because of supplementary incentives for treatment given to

that group only. This amounts to introducing a binary instrument for treatment Z which is such

that Z = 1 ⇐⇒ T × G = {t1; gt}. I also introduce the two corresponding potential treatment

statuses, D(0) and D(1), which stand for treatment without and with the policy. Observed treatment

is D = Z ×D(1) + (1− Z)×D(0).

I introduce a slightly more restrictive set of assumptions than Athey and Imbens's. In particular,

I replace Assumption CIC 3 by

Assumption CIC 3': Time invariance of U and D(0) within groups

(U, D(0)) ⊥⊥ T |G

Note that Assumption CIC 3' is equivalent to D(0) ⊥⊥ T |G and U ⊥⊥ T |G, D(0). The �rst assump-

tion means that selection into treatment would have remained time invariant if no policy had been

implemented. It has one testable implication which is that within the control group, the share of

treated individuals should have remained constant between period 0 and 1. The second assumption

states that in the control group, treated observations should remain �the same� across time, meaning

that the distribution of their unobserved heterogeneity should not change. This will be all the more

credible that observable characteristics of treated observations do not change much over time in the

control group.

I also replace Assumption CIC 4 by Assumption CIC 4':

Assumption CIC 4': Support

U|G = gt, D(0) = 1 ⊆ U|G = gc, D(0) = 1
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U|G = gt, D(0) = 0 ⊆ U|G = gc, D(0) = 0

Finally I introduce a monotonicity assumption:

Assumption CIC 6: Monotonicity

D(1) ≥ D(0)

Assumption CIC 6 means that there should be no de�ers, that is to say observations who get treated

without the policy and do not get treated with it.

Theorem CIC 2: Identi�cation in the IV-CIC model

Let H1(y) =
FYt1,gt |D=1(y)×P(Dt1,gt=1)−FYt0,gt |D=1

(
F−1
Yt0,gc

|D=1

(
FYt1,gc |D=1(y)

))
×P(Dt0,gt=1)

P(Dt1,gt=1)−P(Dt0,gt=1)

and H0(y) =
FYt0,gt |D=0

(
F−1
Yt0,gc

|D=0

(
FYt1,gc |D=0(y)

))
×P(Dt0,gt=0)−FYt1,gt |D=0(y)×P(Dt1,gt=0)

P(Dt0,gt=0)−P(Dt1,gt=0) .

Under Assumption CIC 1, Assumption CIC 2, Assumption CIC 3', Assumption CIC 4' and Assumption

CIC 6:

i) FYt1,gt (1)|D(1)>D(0)(y) and FYt1,gt (0)|D(1)>D(0)(y) are identi�ed:

FYt1,gt (1)|D(1)>D(0)(y) = H1(y)

and

FYt1,gt (0)|D(1)>D(0)(y) = H0(y).

ii) E (Yt1,gt(1)− Yt1,gt(0)|D(1) > D(0)) is identi�ed:

τ IV−CIC = E (Yt1,gt(1)− Yt1,gt(0)|D(1) > D(0)) =

E (Yt1,gt |D = 1)× P(Dt1,gt = 1)− E
(
F−1
Yt1,gc |D=1

(
FYt0,gc |D=1(Yt0,gt)

)
|D = 1

)
× P(Dt0,gt = 1)

P(Dt1,gt = 1)− P(Dt0,gt = 1)

−
E
(
F−1
Yt1,gc |D=0

(
FYt0,gc |D=0(Yt0,gt)

)
|D = 0

)
× P(Dt0,gt = 0)− E (Yt1,gt |D = 0)× P(Dt1,gt = 0)

P(Dt0,gt = 0)− P(Dt1,gt = 0)
.

iii) ∀q ∈ [0; 1] , F−1
Yt1,gt (1)|D(1)>D(0)(q)− F

−1
Yt1,gt (0)|D(1)>D(0)(q) is identi�ed:

τ IV−CICq = F−1
Yt1,gt (1)|D(1)>D(0)(q)− F

−1
Yt1,gt (0)|D(1)>D(0)(q)
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= inf
{
y ∈ Yt1,gt |D = 1/H1(y) ≥ q

}
− inf

{
y ∈ Yt1,gc |D = 0/H0(y) ≥ q

}
.

Theorem CIC 2 states that it is possible to recover the distribution of both Y (1) and Y (0)

among compliers of the period 1 × test group cell from observable distributions. This makes it

possible to identify a LATE, as well as quantile treatment e�ects inside this population. To recover

the distribution of Y (1), I consider the distribution of Y among all treated observations of this cell.

Since those observations include both compliers and always takers, I need to �withdraw� from it the

distribution of Y among always takers. But this last distribution is not observed (because I cannot

distinguish compliers from always takers), hence the need to reconstruct it. On that purpose, I use

distributions of Y among always takers in the three remaining cells. Those three distributions are

observed since by de�nition treated observations in the three remaining cells must be always takers.

Then, identi�cation relies on a similar double-matching process than Athey and Imbens's theorem

3.1 except that it requires considering period × group cells among treated observations only. Take

an always taker in the period 0 × control group × D = 1 cell. Denote y its observed outcome, q

the quantile corresponding to y in the distribution of this cell, and u the realization of U for this

observation. By Assumption CIC 1, y = h1(u, t0). Now consider the observation at the qth quantile of

the period 1 × control group × D = 1 cell, and denote y∗ its observed outcome. Since the distribution

of U is time invariant within group × D cells (Assumption CIC 4'), those two always takers must have

the same u. Therefore, y∗ = h1(u, t1), which means that the qth quantile of the period 1 × control

group × D = 1 cell identi�es the period 1 Y (1) of an always taker with unobserved heterogeneity u.

Now consider an always taker in the period 0 × test group × D = 1 cell with observed outcome y.

Since Y only depends on time, treatment status and unobserved heterogeneity (Assumption CIC 1)

and since h1(., t0) is invertible (Assumption CIC 2), she must have the same unobserved heterogeneity

u than the �rst always taker. Thus for an always taker of the period 0 × test group ×D = 1 cell with

observed outcome y, it is possible to recover its period 1 Y (1): it is merely equal to y∗. Therefore,

to recover the whole distribution of Y (1) in period 1 among test group always takers, it su�ces to

translate the whole distribution of the period 0 × test group cell × D = 1 from y to the corresponding

y∗ for each value of y.

Identi�cation of the distribution of Y (0) among compliers of the period 1 × test group cell is
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obtained as follows. The distribution of Y (0) in period 1 among observations which were untreated in

period 0 in the treatment group is reconstructed through a double-matching process across untreated

observations. But those observations include both compliers and never takers, hence the need to

�withdraw� the distribution of Y (0) among never takers. This is achieved easily since never takers in

this cell are all untreated observations so that this distribution is observed.

Finally, to deal with applications with potentially large share of always takers and where the

treatment rate also increases in the control group (see for instance Du�o [2001]), I give a second partial

identi�cation result. I show that in such applications partial identi�cation of quantile treatment e�ects

can be obtained through a strengthening of CIC-IV assumptions. First, the instrument Z should now

take three values, re�ecting the fact that in period 1 the two groups received supplementary incentives

for treatment, but that the increase in incentives for treatment was stronger in the treatment group.

Consequently, Z = 0 ⇐⇒ T = t0, Z = 1 ⇐⇒ T = t1 and G = gc and Z = 2 ⇐⇒ T = t1 and G = gt.

There are now three potential treatment statuses: D(0), D(1) and D(2), hence the need to modify

Assumption CIC 6 into

Assumption CIC 6': Monotonicity

D(2) ≥ D(1) ≥ D(0).

Moreover, I also need to take a common trend assumption on the treatment rate, which states that

if the treatment group had also received a low amount of supplementary incentives for treatment in

period 1, the share of observations treated would have followed the same evolution in the treatment

and in the control group between the two periods:

Assumption CIC 7: Common trend on treatment rate

P(Dt1,gt(1) = 1)− P(Dt0,gt(0) = 1) = P(Dt1,gc(1) = 1)− P(Dt0,gc(0) = 1).

Under this modi�ed set of assumptions, the distributions of Y (1) and Y (0) within a speci�c population

of compliers, i.e. those who get treated if and only if they receive �strong� incentives for treatment,

are partially identi�ed. Consequently, the average treatment e�ect and quantile treatment e�ects are

also partially identi�ed but due to a concern for brevity I give explicit bounds for distributions only.

Proposition CIC 2: Partial Identi�cation in the IV-CIC model

Under Assumption CIC 1, Assumption CIC 2, Assumption CIC 3', Assumption CIC 4', Assumption
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CIC 6' and Assumption CIC 7, FYt1,gt (1)|D(2)>D(1)(y) and FYt1,gt (0)|D(2)>D(1)(y) are partially identi�ed:

B1,CIC−IV
− ≤ FYt1,gt (1)|D(2)>D(1)(y) ≤ B1,CIC−IV

+

and

B0,CIC−IV
− ≤ FYt1,gt (0)|D(2)>D(1)(y) ≤ B0,CIC−IV

+

with

B1,CIC−IV
− =

FYt1,gt
|D=1(y)×P(Dt1,gt=1)−FYt0,gt

|D=1

(
F−1

Yt0,gc |D=1

(
FYt1,gc |D=1(y)×P(Dt1,gc=1)

P(Dt0,gc=1)

))
×P(Dt0,gt=1)−[P(Dt1,gc=1)−P(Dt0,gc=1)]

P(Dt1,gt=1)−P(Dt0,gt=1)−[P(Dt1,gc=1)−P(Dt0,gc=1)]
,

B1,CIC−IV
+ =

FYt1,gt
|D=1(y)×P(Dt1,gt=1)−FYt0,gt

|D=1

F−1
Yt0,gc |D=1

FYt1,gc |D=1(y)×P(Dt1,gc=1)−(P(Dt1,gc=1)−P(Dt0,gc=1))
P(Dt0,gc=1)

×P(Dt0,gt=1)

P(Dt1,gt=1)−P(Dt0,gt=1)−[P(Dt1,gc=1)−P(Dt0,gc=1)]
,

B0,CIC−IV
− =

FYt1,gt
|D=0(y)×P(Dt1,gt=0)−FYt0,gt

|D=0

(
F−1

Yt0,gc |D=0

(
FYt1,gc |D=0(y)×

P(Dt1,gc=0)
P(Dt0,gc=0)

))
×P(Dt0,gt=0)−[P(Dt1,gc=0)−P(Dt0,gc=0)]

P(Dt1,gt=0)−P(Dt0,gt=0)−[P(Dt1,gc=0)−P(Dt0,gc=0)]

and

B0,CIC−IV
+ =

FYt1,gt
|D=0(y)×P(Dt1,gt=0)−FYt0,gt

|D=0

F−1
Yt0,gc |D=0

FYt1,gc |D=0(y)×P(Dt1,gc=0)−(P(Dt1,gc=0)−P(Dt0,gc=0))
P(Dt0,gc=0)

×P(Dt0,gt=0)

P(Dt1,gt=0)−P(Dt0,gt=0)−[P(Dt1,gc=0)−P(Dt0,gc=0)]
.

The bounds are obtained as follows. Under common trend, the DID on treatment rate (P(Dt1,gt =

1) − P(Dt0,gt = 1) − [P(Dt1,gc = 1)− P(Dt0,gc = 1)]) identi�es the size of a population of compliers.

Because the share of treated observations increases in the control group as well, it is no longer possible

to assume that treated (resp. untreated) observations are the same in the control group in period 0

and 1, i.e. that their distribution of U is the same. Period 0 observations can not be matched to their

rank counterpart in period 1, because the fact that some �compliers� got treated in period 1 might have

disrupted the distribution of U . But thanks to monotonicity, the size of this population of compliers

is known: it is equal to the change in the treatment rate between those two periods, and therefore

the maximum and minimum impact of those compliers on the rank of observations is known as well,

hence the partial identi�cation result. Bounds will be tight in applications where the change in the

treatment rate in the control group across the two periods is small.
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Summary and conclusions

This paper provides new identi�cation results applying to fuzzy DID and fuzzy CIC. Most of

the fuzzy DID results hold under a common trend assumption on the outcome only, whereas the IV

result commonly invoked in such settings holds under two common trends (on the outcome and on

the treatment) and a monotonicity assumption. This single common trend assumption is su�cient to

identify an ATT when there are no always takers, or at least its sign when there are �few� of them.

When the shares of always takers are �large�, supplementary assumptions must be taken. For instance,

identi�cation of an ATT can be obtained under the assumption that ATT do not vary across time and

group. The milder assumption that the ATT in the control group did not change from period 0 to 1

substantially improves partial identi�cation. This last result is of particular interest in applications

considering the extension of a policy because in such situations it is likely to yield a narrow identi�cation

region. I present an application in which the bounds I derive allow drawing inference on the sign of an

ATT. This is because in this example, there are few always takers. Had there been more of them, the

identi�cation region would have been too large to infer the sign of the ATT. Consequently, in a fuzzy

DID, common trend on Y is su�cient to obtain accurate information on the ATT when there are few

always takers, even if there are many never takers.

Similarly, in a fuzzy CIC, assumptions of the standard CIC model are su�cient for identi�cation

when there are no always takers. When there are always takers, they are no longer su�cient. However,

it is possible to recover identi�cation in applications with always takers but where the share of treated

observations remained stable between the two periods in the control group, even though this is at the

expense of slightly stronger assumptions.
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Tables

Table 1: Descriptive Statistics

 Whole sample Test Centers Control Centers 
  2006 2007 P-value 2006 2007 P-value 

        

Patients’ characteristics        

% males 48.8% 47.9% 47.9% 0.98 48.5% 50.4% 0.30 

Age 44.1 44.6 43.7 0.08 44.0 44.3 0.52 

% employed 67.3% 65.3% 68.3% 0.11 65.3% 69.8% 0.01 

% with no degree 17.0% 19.2% 21.0% 0.25 14.2% 14.1% 0.98 

Daily cigarettes smoked 21.6 21.7 21.93 0.60 22.1 20.9 <0.01 

FTND 5.9 5.8 5.8 0.29 6.0 5.9 0.11 

% with AHAD>=11 39.8% 40.3% 39.1% 0.54 42.2% 37.7% 0.01 

% with DHAD>=11 11.9% 13.1% 11.7% 0.29 11.6% 11.2% 0.72 

% with chronic obstructive pulmonary diseases 16.7% 16.2% 18.1% 0.19 17.5% 15.1% 0.09 

        

Treatment prescribed        

% prescribed nicotine patch 53.4% 75.0% 45.5% <0.001 45.9% 49.7% 0.05 

% prescribed varenicline 10.0% 0.01% 38.2% <0.001 0% 1.6% <0.001 

        

Cessation Outcome        

Number of days between the first visit and the last CO measure 86.7 89.3 96.7 0.05 84.8 77.6 0.03 

% of successful quits 49.3% 53.7% 56.9% 0.11 46.6% 41.6% <0.01 

        

N 5 299 1 195 1 303  1 300 1 501  
1FTND stands for Fagerström Test for Nicotine Dependence and is a measure of patients’ degree of addiction. 
2AHAD is the anxiety scale in the Hospital Anxiety Depression (HAD) scale, scored from 0 to 21, which is used to identify 
individuals with anxio-depressive disorders, with a threshold score of 11 (see Zigmond et al. [1983]). 
3DHAD is the depression scale in the Hospital Anxiety Depression (HAD) scale, scored from 0 to 21, which is used to 
identify individuals with anxio-depressive disorders, with a threshold score of 11 (see Zigmond et al. [1983]). 
4CO stands for carbon monoxide which is a biomarker for tobacco use. 
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Table 2: Robustness Checks

  

 Common Trend 

    

 Diff in diff P-value N 

2003-2004 0.045 0.36 1 580 

2004-2005 0.032 0.46 2 499 

2005-2006 0.042 0.19 4 136 

2006-2007 0.082 0.003 5 299 

2007-2008 -0.043 0.17 4 400 

  

 Placebo DID 

    

 Diff in diff P-value N 

Patients’ observable characteristics    

% Males -0.020 0.46 5 299 

Age -1.153 0.08 5 298 

% employed -0.015 0.57 5 299 

% with no degree 0.019 0.36 5 299 

Daily cigarettes smoked 1.454 0.02 5 299 

FTND 0.237 0.06 5 299 

% with AHAD>=11 0.033 0.22 5 299 

% with DHAD>=11 -0.010 0.59 5 299 

% with chronic obstructive pulmonary diseases 0.043 0.04 5 299 

Measurement of smoking status    

Number of days between the first visit and the last CO measure 14.653 0.004 5 299 

% included 0.022 0.30 8 581 

    

 P-value of B_ according to inclusion threshold 

   

  Test centers thresholds 

  Threshold 1: 15% Threshold 2: 20% Threshold 3: 25% 

 Threshold 1: 2% 0.04 0.03 0.04 

Control centers thresholds 
 

Threshold 2: 3% 0.01 0.01 0.02 

 Threshold 3: 4% 0.11 0.08 0.14 
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Figures

Figure 1: Density of the prescription rate of varenicline
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Appendix A: Explicit expression of Σ

Let

X =
(
Y TG Y (1− T )G Y T (1−G) Y (1− T )(1−G) Y D(1− T )G YDT (1−G) Y D(1− T )(1−G)

DTG D(1− T )G DT (1−G) D(1− T )(1−G) TG (1− T )G T (1−G) (1− T )(1−G)
)′

Let us denote θ = E(X), V = V(X) , θ̂ the sample counterpart of θ and V̂ the sample counterpart of

V .

Since Y is bounded, all the coordinates of X have a variance. Therefore, according to the central limit

Theorem,

√
n(θ̂ − θ) d→ N (0, V ).

Let us denote

h(x) =


x1
x12
− x2
x13
− x3
x14

+
x4
x15

+
(
x5
x9
−M

)
× x9
x13

+
(
x6
x10
−M

)
×x10
x14
−
(
x7
x11
−m

)
×x11
x15

x8
x12

x1
x12
−M

 ,

which I de�ne ∀x = (x1, x2, x3, x4x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15) ∈ R7 × (R∗)8.

θ ∈ R7 × (R∗)8 and h is continuously di�erentiable over R7 × (R∗)8 with jacobian H(x) ∈M2,15.

I can therefore apply the delta method to state that:

√
n

 ̂B0(M,m)−B0(M,m)

Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

 d→ N (0; Σ)

where Σ = H(θ)V H(θ)′.

A consistent estimator of Σ is Σ̂ = H(θ̂)V̂ H(θ̂)′.

Appendix B: proofs

Proof of Lemma DID 1:

∀(i, j) ∈ {t0; t1} × {gc; gt} , Yi,j = Yi,j(1)×D + Yi,j(0)× (1−D) = (Yi,j(1)− Yi,j(0))×D + Yi,j(0),

41



then,

DID = E [(Yt1,gt(1)− Yt1,gt(0))D]− E [(Yt0,gt(1)− Yt0,gt(0))D]

−E [(Yt1,gc(1)− Yt1,gc(0))D] + E [(Yt0,gc(1)− Yt0,gc(0))D]

+E(Yt1,gt(0))− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0)).

Under Assumption DID 1,

E(Yt1,gt(0))− E(Yt0,gt(0))− E(Yt1,gc(0)) + E(Yt0,gc(0)) = 0.

Thus

DID = E(Yt1,gt
(1)− Yt1,gt

(0)|D = 1)× P(Dt1,gt
= 1)− E(Yt0,gt

(1)− Yt0,gt
(0)|D = 1)× P(Dt0,gt

= 1)

− [E(Yt1,gc
(1)− Yt1,gc

(0)|D = 1)× P(Dt1,gc
= 1)− E(Yt0,gc

(1)− Yt0,gc
(0)|D = 1)× P(Dt0,gc

= 1)] , (2)

hence the result.

QED.

Proof of Proposition DID 1:

Proof of i)

In the �no always takers� special case, P(Dt0,gt = 1), P(Dt1,gc = 1) and P(Dt0,gc = 1) are all equal to

0. Therefore, (2) can be rewritten as

DID = E(Yt1,gt(1)− Yt1,gt(0)|D = 1)× P(Dt1,gt = 1),

hence the result.

Proof of ii)

From (2),

DID = ATTt1,gt×P(Dt1,gt = 1)−ATTt0,gt×P(Dt0,gt = 1)−ATTt1,gc×P(Dt1,gc = 1)+ATTt0,gc×P(Dt0,gc = 1).
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If ∀(i, j) ∈ {t0; t1} × {gc; gt} , ATTi,j = ATT , then,

DID = ATT ×DIDP ,

hence the result.

QED.

Proof of Proposition DID 2:

Proof of i)

Assume that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1. I denote

A = E(Yt0,gt(0)|D = 1)×P(Dt0,gt = 1)+E(Yt1,gc(0)|D = 1)×P(Dt1,gc = 1)−E(Yt0,gc(0)|D = 1)×P(Dt0,gc = 1).

This is the only quantity appearing in (2) which cannot be estimated from the sample and therefore

needs to be bounded.

Since m ≤ Y (0) ≤M , A−1 ≤ A ≤ A
+
1 , with

A−1 = m× P(Dt0,gt = 1) +m× P(Dt1,gc = 1)−M × P(Dt0,gc = 1)

and

A+
1 = M × P(Dt0,gt = 1) +M × P(Dt1,gc = 1)−m× P(Dt0,gc = 1).

But for bounds to be sharp, the common trend assumption should hold, which implies:

0 = E(Yt1,gt(0)|D = 1)× P(Dt1,gt = 1) + E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1))

−E(Yt0,gt(0)|D = 1)× P(Dt0,gt = 1)− E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1))

−E(Yt1,gc(0)|D = 1)× P(Dt1,gc = 1)− E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1))

+E(Yt0,gc(0)|D = 1)× P(Dt0,gc = 1) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).
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The only quantity in this equation which is both unobserved and does not enter into (2) is E(Yt1,gt(0)|D =

1). For common trend to hold, it should be equal to

A+ E(Yt0,gt |D = 0)× (1− P(Dt0,gt = 1)) + E(Yt1,gc |D = 0)× (1− P(Dt1,gc = 1))
P(Dt1,gt = 1)

−E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1))
P(Dt1,gt = 1)

.

Since m ≤ E(Yt1,gt(0)|D = 1) ≤M , this implies that we should have A−2 ≤ A ≤ A
+
2 , with

A−2 = m×P(Dt1,gt = 1)−E(Yt0,gt |D = 0)× (1−P(Dt0,gt = 1))−E(Yt1,gc |D = 0)× (1−P(Dt1,gc = 1))

+E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1))

and

A+
2 = M ×P(Dt1,gt = 1)−E(Yt0,gt |D = 0)× (1−P(Dt0,gt = 1))−E(Yt1,gc |D = 0)× (1−P(Dt1,gc = 1))

+E(Yt1,gt |D = 0)× (1− P(Dt1,gt = 1)) + E(Yt0,gc |D = 0)× (1− P(Dt0,gc = 1)).

Consequently, we should have

max(A−1 ;A−2 ) ≤ A ≤ min(A+
1 ;A+

2 ). (3)

Combining (2) and (3) and rearranging yields B− and B+, which are sharp by construction.

I show now that if none of the two bounds is informative then PAT > P(Dt1,gt = 1). If B− and B+

are uninformative we have B0(M,m) < E(Yt1,gt |D = 1) −M and B0(m,M) > E(Yt1,gt |D = 1) −m.

Subtracting those two inequalities yields PAT > P(Dt1,gt = 1). This implies that PAT ≤ P(Dt1,gt = 1)

is a su�cient condition to have that at least one of the two bounds is informative.

To show that this condition is not su�cient to have that the two bounds are informative, it su�ces to

consider the following DGP. M = 1, m = 0, P(Dt1,gt = 1) = 1, P(Dt0,gt = 1) = P(Dt1,gc = 1) = 0.1,

P(Dt0,gc = 1) = 0, E(Yt1,gt(1)|D = 1) = E(Yt1,gt(0)|D = 1) = 1, E(Yt0,gt(0)|D = 1) = E(Yt1,gc(0)|D =
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1) = 0.5, E(Yt0,gt(0)|D = 0) = E(Yt1,gc(0)|D = 0) = 1, E(Yt0,gc(0)|D = 0) = 0.9. Those are all

the quantities which are needed to compute B− since the remaining expectations cancel out in the

calculation. PAT = 0.2 ≤ P(Dt1,gt = 1) = 1, the common trend assumption holds (1×1−0.5×0.1−1×

0.9− 0.5× 0.1− 1× 0.9 + 0.9 = 0), and B− is not informative since it is equal to E(Yt1,gt |D = 1)−M .

Proof of ii)

If ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤M) = 1,

E(Yt1,gc |D = 1)−M ≤ ATTt1,gc ≤ E(Yt1,gc |D = 1)−m

and

E(Yt0,gc |D = 1)−M ≤ ATTt0,gc ≤ E(Yt0,gc |D = 1)−m.

If ATTt1,gc = ATTt0,gc = ATTgc , these two inequalities imply that

max (E(Yt1,gc |D = 1); E(Yt0,gc |D = 1))−M ≤ ATTgc

and

ATTgc ≤ min (E(Yt1,gc |D = 1); E(Yt0,gc |D = 1))−m.

Moreover from (2) we get:

ATTt1,gt =
DID +ATTt0,gt × P(Dt0,gt = 1) +ATTgc × (P(Dt1,gc = 1)− P(Dt0,gc = 1))

P(Dt1,gt = 1)
.

Therefore, combining this last equality with the two preceding inequalities yields B1 and B2 as lower

or upper bounds to ATTt1,gt depending on the sign of P(Dt1,gc = 1)− P(Dt0,gc = 1). For some DGP,

min(B1;B2) might be smaller than E(Yt1,gt |D = 1) −M , which means that min(B1;B2) is not a

sharp lower bound, hence the need to set B
′
− = max

(
min(B1;B2); E(Yt1,gt |D = 1)−M

)
to ensure

sharpness.

Finally, I show that P(Dt0,gt = 1) + |P(Dt1,gc = 1)− P(Dt0,gc = 1)| ≤ P(Dt1,gt = 1) is a su�cient

condition to have that at least one of the two bounds is informative. Assume P(Dt1,gc = 1)−P(Dt0,gc =

1) ≥ 0. None of the two bounds is informative if B1 < E(Yt1,gt |D = 1) −M and B2 > E(Yt1,gt |D =
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1)−m. Subtracting those two inequalities yields

(M −m)× (P(Dt0,gt
= 1) + P(Dt1,gc

= 1)− P(Dt0,gc
= 1))

+ (min (E(Yt1,gc
|D = 1); E(Yt0,gc

|D = 1))−max (E(Yt1,gc
|D = 1); E(Yt0,gc

|D = 1)))×(P(Dt1,gc
= 1)− P(Dt0,gc

= 1))

> (M −m)× P(Dt1,gt
= 1) (4)

Since (4) is a necessary condition to have that none of the bounds is informative, the converse inequality

is su�cient to have that at least one of the two bounds is informative. But P(Dt0,gt = 1) + P(Dt1,gc =

1) − P(Dt0,gc = 1) ≤ P(Dt1,gt = 1) implies the converse inequality, hence the result. The proof is

symmetric if P(Dt1,gc = 1)− P(Dt0,gc = 1) < 0.

QED.

Proof of Proposition DID 3:

Proof of i)

Under Assumption DID 1 and the supplementary assumptions that ∃(m, M) ∈ R2/P(m ≤ Y (0) ≤

M) = 1, ATTt1,gt ∈ [B−;B+] according to the �rst part of Proposition DID 2.

lim
n→+∞

P(ATTt1,gt ≥ LB
B−
(1−α)) ≥ lim

n→+∞
P(B− ≥ LBB−

(1−α)) = 1− α

2
.

Similarly,

lim
n→+∞

P(ATTt1,gt ≤ UB
B+

(1−α)) ≥ 1− α

2

which implies that

lim
n→+∞

P(LBB−
(1−α) ≤ ATTt1,gt ≤ UB

B+

(1−α)) ≥ 1− α.

Therefore, CI2 =
[
LB

B−
(1−α);UB

B+

(1−α)

]
is a CI for ATTt1,gt with (1− α)% asymptotic coverage.

Then, consider P(UBB−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α)).

If ATTt1,gt = B−,

lim
n→+∞

P(UBB−
(1−2α) ≤ B− ≤ UB

B+

(1−2α)) = lim
n→+∞

P(UBB−
(1−2α) ≤ B−)− lim

n→+∞
P(B− > UB

B+

(1−2α)) = 1− α
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since the second term converges to 0.

If ATTt1,gt = B+, the same argument holds and lim
n→+∞

P(UBB−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α)) = 1 − α

as well.

If B− < ATTt1,gt < B+,

lim
n→+∞

P(UBB−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α))

= lim
n→+∞

P(UBB−
(1−2α) ≤ ATTt1,gt)− lim

n→+∞
P(ATTt1,gt > UB

B+

(1−2α)) = 1.

Therefore, lim
n→+∞

P(UBB−
(1−2α) ≤ ATTt1,gt ≤ UB

B+

(1−2α)) ≥ 1− α whatever the value of ATTt1,gt so that

CI3 =
[
LB

B−
(1−2α);UB

B−
(1−2α)

]
is also a CI for ATTt1,gt with (1− α)% asymptotic coverage.

Proof of ii)

The proof follows the same steps as in i), once noted that under Assumption DID 1 and the supple-

mentary assumptions that ∃(m, M) ∈ R2/∀k ∈ {0; 1} P(m ≤ Y (k) ≤ M) = 1 and that ATTt1,gc =

ATTt0,gc , ATTt1,gt ∈
[
B
′
−;B

′
+

]
as per the second part of Proposition DID 2.

QED.

Proof of Proposition DID 4:

By the delta method,
√
n
(

̂B0(M,m)−B0(M,m)
)

d→ N (0;σ2
1).

By the central limit theorem,

√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
d→ N (0;σ2

2).

If B0(M,m) > E(Yt1,gt |D = 1)−M ,

√
n
(
B̂− −B−

)
=
√
n
(
max

(
̂B0(M,m); Ê(Yt1,gt |D = 1)−M

)
−max

(
B0(M,m); E(Yt1,gt |D = 1)−M

))

=
√
n
(

̂B0(M,m)−B0(M,m)
)

+
√
n
(
max

(
̂B0(M,m); Ê(Yt1,gt |D = 1)−M

)
− ̂B0(M,m)

)
.

The second term is op(1) because max
(

̂B0(M,m); Ê(Yt1,gt |D = 1)−M
)

= ̂B0(M,m) with probabil-
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ity approaching 1. This implies the result.

If B0(M,m) < E(Yt1,gt |D = 1)−M , the proof is symmetric.

If B0(M,m) = E(Yt1,gt |D = 1)−M ,

√
N
(
B̂− −B−

)
= max

(√
N
(

̂B0(M,m)−B0(M,m)
)

;
√
N
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

))
.

Due to the continuous mapping Theorem,

max
(√

N
(

̂B0(M,m)−B0(M,m)
)

;
√
N
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

))
↪→ S1 =

(
max

(
N1;N2

))

where

(
N1 N2

)′
∼ N (0,Σ).

QED.

Proof of Proposition DID 5:

P(B− ∈ CI) = P
(
B− ∈ CIA | Ê(Yt1,gt

|D = 1)−M +
ln(n)√
n

< ̂B0(M,m)
)
×P
(

Ê(Yt1,gt
|D = 1)−M +

ln(n)√
n

< ̂B0(M,m)
)

+P
(
B− ∈ CIB | Ê(Yt1,gt

|D = 1)−M − ln(n)√
n
≤ ̂B0(M,m) ≤ Ê(Yt1,gt

|D = 1)−M +
ln(n)√
n

)

×P
(

Ê(Yt1,gt |D = 1)−M − ln(n)√
n
≤ ̂B0(M,m) ≤ Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

)

+P
(
B− ∈ CIC | ̂B0(M,m) +

ln(n)√
n
<Ê(Yt1,gt

|D = 1)−M
)
×P

(
̂B0(M,m) +

ln(n)√
n
<Ê(Yt1,gt

|D = 1)−M
)
.

If B0(M,m) > E(Yt1,gt |D = 1)−M ,

P
(

Ê(Yt1,gt |D = 1)−M +
ln(n)√
n

< ̂B0(M,m)
)

= P
(√

n
(

̂B0(M, m)−B0(M, m)
)
−
√

n
(

Ê(Yt1,gt |D = 1)− E(Yt1,gt |D = 1)
)

> ln(n)−
(
B0(M, m)− (E(Yt1,gt |D = 1)−M)

)√
n
)

I denote Vn this sequence.

lim
n→+∞

ln(n)−
(
B0(M,m)− (E(Yt1,gt |D = 1)−M)

)√
n = −∞.
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Consequently, ∀x ∈ R, ∃n0 ∈ N/n ≥ n0 ⇒

P
(√

n
(

̂B0(M,m)−B0(M,m)
)
−
√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
> x

)
≤ Vn

Therefore,

lim
n→+∞

P
(√

n
(

̂B0(M,m)−B0(M,m)
)
−
√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
> x

)
≤ lim

n→+∞
Vn

A delta method and the central limit theorem imply that

lim
n→+∞

P
(√

n
(

̂B0(M,m)−B0(M,m)
)
−
√
n
(
Ê(Yt1,gt |D = 1)−M − (E(Yt1,gt |D = 1)−M)

)
> x

)
= 1−F (x),

where F (.) is the cdf of a random variable with a normal distribution.

Since this holds ∀x ∈ R, we can let x go to −∞ which yields 1 ≤ lim
n→+∞

Vn. Therefore,

lim
n→+∞

P
(

Ê(Yt1,gt |D = 1)−M +
ln(n)√
n

< ̂B0(M,m)
)

= 1,

which implies that

lim
n→+∞

P
(
B− ∈ CIB | Ê(Yt1,gt |D = 1)−M − ln(n)√

n
≤ ̂B0(M,m) ≤ Ê(Yt1,gt |D = 1)−M +

ln(n)√
n

)
= 0

and

lim
n→+∞

P
(

̂B0(M,m) +
ln(n)√
n
<Ê(Yt1,gt |D = 1)−M

)
= 0.

Consequently,

lim
n→+∞

P(B− ∈ CI) = lim
n→+∞

P
(
B0(M,m) ∈ CIA

)
= 1− α.

If B0(M,m) = E(Yt1,gt |D = 1)−M or B0(M,m) < E(Yt1,gt |D = 1)−M, the same type of reasoning

yields lim
n→+∞

P(B− ∈ CI) = 1− α which completes the proof.

QED.

Proof of Lemma CIC 1:
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The proof is fairly straightforward. Assume for instance that Assumption CIC 6 does not hold because

P(Dt1,gc = 0) < 1. Under Assumption CIC 1 to Assumption CIC 4, FYt1,gt (0)(y) = FYt0,gt (0)

(
F−1
Yt0,gc (0)

(
FYt1,gc (0)(y)

))
.

FYt1,gc (y) = FYt1,gc (0)(y) × P(Dt1,gc = 0) + FYt1,gc (1)(y) × (1− P(Dt1,gc = 0)). Since P(Dt1,gc = 0) <

1, this is not necessarily equal to FYt1,gc (0)(y). Therefore, FYt1,gt (0)(y) is not necessarily equal to

FYt0,gt

(
F−1
Yt0,gc

(
FYt1,gc (y)

))
.

QED.

Proof of Theorem CIC 1:

Proof of i)

In the no always takers special case,

FYt0,gt

(
F−1
Yt0,gc

(
FYt1,gc (y)

))
= FYt0,gt (0)

(
F−1
Yt0,gc (0)

(
FYt1,gc (0)(y)

))
.

According to part i) of Athey and Imbens's Theorem 3.1, this is equal to FYt1,gt (0)(y), which can be

rewritten as

FYt1,gt (0)|D=1(y)× P(Dt1,gt = 1) + FYt1,gt (0)|D=0(y)× P(Dt1,gt = 0).

Rearranging this last equation yields the result.

Proof of ii)

In the no always takers special case,

E (Yt1,gt)−E
(
F−1
Yt1,gc

(
FYt0,gc (Yt0,gt)

))
= E (Yt1,gt)−E

(
F−1
Yt1,gc (0)

(
FYt0,gc (0)(Yt0,gt(0))

))
= E (Yt1,gt)−E (Yt1,gt(0))

according to part iii) of Athey and Imbens's Theorem 3.1. This last expression can be rewritten as

E(Yt1,gt(1)|Dt1,gt = 1)× P(Dt1,gt = 1) + E(Yt1,gt(0)|Dt1,gt = 0)× P(Dt1,gt = 0)

−E(Yt1,gt(0)|Dt1,gt = 1)× P(Dt1,gt = 1)− E(Yt1,gt(0)|Dt1,gt = 0)× P(Dt1,gt = 0)

which is equal to

E(Yt1,gt(1)− Yt1,gt(0)|Dt1,gt = 1)× P(Dt1,gt = 1),
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hence the result.

Proof of iii)

τCICq = F−1
Yt1,gt (1)|D=1(q)− F−1

Yt1,gt (0)|D=1(q)

= F−1
Yt1,gt |D=1(q)− inf

{
y ∈ Yt1,gt(0)/FYt1,gt (0)|D=1(y) ≥ q

}
= F−1

Yt1,gt |D=1(q)− inf
{
y ∈ Yt1,gc/FYt1,gt (0)|D=1(y) ≥ q

}
because of Assumption CIC 4 and because of the de�nition of the no always takers special case,

= F−1
Yt1,gt |D=1(q)− inf {y ∈ Yt1,gc/G(y) ≥ q}

because of i).

QED.

Proof of Proposition CIC 1:

Under Assumption CIC 1 to Assumption CIC 4,

FYt1,gt (0)(y) = FYt0,gt (0)

(
F−1
Yt0,gc (0)

(
FYt1,gc (0)(y)

))
. (5)

FYt1,gc (0)(y) = FYt1,gc |D=0(y)× P(Dt1,gc = 0) + FYt1,gc (0)|D=1(y)× P(Dt1,gc = 1).

Since 0 ≤ FYt1,gc (0)|D=1(y) ≤ 1,

FYt1,gc |D=0(y)× P(Dt1,gc = 0) ≤ FYt1,gc (0)(y) ≤ FYt1,gc |D=0(y)× P(Dt1,gc = 0) + P(Dt1,gc = 1).

Since F−1
Yt0,gc (0) is weakly increasing,

F−1
Yt0,gc (0)

(
FYt1,gc |D=0(y)× P(Dt1,gc = 0)

)
≤ F−1

Yt0,gc (0)

(
FYt1,gc (0)(y)

)
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and

F−1
Yt0,gc (0)

(
FYt1,gc (0)(y)

)
≤ F−1

Yt0,gc (0)

(
FYt1,gc |D=0(y)× P(Dt1,gc = 0) + P(Dt1,gc = 1)

)
(6)

Then,

FYt0,gc (0)(y) = FYt0,gc |D=0(y)× P(Dt0,gc = 0) + FYt0,gc (0)|D=1(y)× P(Dt0,gc = 1).

Since 0 ≤ FYt0,gc (0)|D=1(y) ≤ 1,

FYt0,gc |D=0(y)× P(Dt0,gc = 0) ≤ FYt0,gc (0)(y) ≤ FYt0,gc |D=0(y)× P(Dt0,gc = 0) + P(Dt0,gc = 1).

Therefore,

{
y/FYt0,gc |D=0(y) ≥ q

P(Dt0,gc = 0)

}
⊆
{
y/FYt0,gc (0)(y) ≥ q

}
⊆
{
y/FYt0,gc |D=0(y) ≥ q − P(Dt0,gc = 1)

P(Dt0,gc = 0)

}

which implies:

F−1
Yt0,gc |D=0

(
q − P(Dt0,gc = 1)

P(Dt0,gc = 0)

)
≤ F−1

Yt0,gc (0)(q) ≤ F
−1
Yt0,gc |D=0

(
q

P(Dt0,gc = 0)

)
. (7)

Combining (6) and (7) yields:

F−1
Yt0,gc |D=0

(
FYt1,gc |D=0(y)× P(Dt1,gc = 0)− P(Dt0,gc = 1)

P(Dt0,gc = 0)

)
≤ F−1

Yt0,gc (0)

(
FYt1,gc (0)(y)

)

and

F−1
Yt0,gc (0)

(
FYt1,gc (0)(y)

)
≤ F−1

Yt0,gc |D=0

(
FYt1,gc |D=0(y)× P(Dt1,gc = 0) + P(Dt1,gc = 1)

P(Dt0,gc = 0)

)
. (8)

Then,

FYt0,gt (0)(y) = FYt0,gt |D=0(y)× P(Dt0,gt = 0) + FYt0,gt (0)|D=1(y)× P(Dt0,gt = 1).

Since 0 ≤ FYt0,gt (0)|D=1(y) ≤ 1,

FYt0,gt |D=0(y)× P(Dt0,gt = 0) ≤ FYt0,gt (0)(y) ≤ FYt0,gt |D=0(y)× P(Dt0,gt = 0) + P(Dt0,gt = 1). (9)
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Combining (5), (8) and (9) yields:

FYt0,gt |D=0

(
F−1
Yt0,gc |D=0

(
FYt1,gc |D=0(y)× P(Dt1,gc = 0)− P(Dt0,gc = 1)

P(Dt0,gc = 0)

))
×P(Dt0,gt = 0) ≤ FYt1,gt (0)(y)

and

FYt1,gt (0)(y) ≤ FYt0,gt |D=0

(
F−1

Yt0,gc |D=0

(
FYt1,gc |D=0(y)× P(Dt1,gc

= 0) + P(Dt1,gc
= 1)

P(Dt0,gc = 0)

))
×P(Dt0,gt = 0)+P(Dt0,gt = 1),

which implies

BCIC
− ≤ FYt1,gt (0)|D=1(y) ≤ BCIC

+

with

BCIC
− =

FYt0,gt |D=0

(
F−1
Yt0,gc

|D=0

(
FYt1,gc

|D=0(y)×P(Dt1,gc
=0)−P(Dt0,gc

=1)

P(Dt0,gc
=0)

))
×P(Dt0,gt=0)−FYt1,gt |D=0(y)×P(Dt1,gt=0)

P(Dt1,gt=1)

and

BCIC
+ =

FYt0,gt |D=0

(
F−1
Yt0,gc

|D=0

(
FYt1,gc

|D=0(y)×P(Dt1,gc
=0)+P(Dt1,gc

=1)

P(Dt0,gc
=0)

))
×P(Dt0,gt=0)+P(Dt0,gt=1)−FYt1,gt |D=0(y)×P(Dt1,gt=0)

P(Dt1,gt=1) .

QED.

Proof of Theorem CIC 2:

Proof of i)

To alleviate the notational burden, I introduce Ug
d∼ U |G = g.

By assumption Assumption CIC 2, hj(u, t) is invertible with respect to u. Denote h−1
j (u; t) its inverse.

∀(t, g, j, k) ∈ {t0; t1} × {gc; gt} × {0; 1}2,

FYt,g(j)|D(0)=k(y) = P (hj(U, t)≤y|G = g, T = t,D(0) = k)

= P
(
U≤h−1

j (y; t)|G = g, T = t,D(0) = k
)

= P
(
U≤h−1

j (y; t)|G = g,D(0) = k
)

by assumption Assumption CIC 3'.
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Therefore,

FYt,g(j)|D(0)=k(y) = FUg |D(0)=k(h
−1
j (y; t)). (10)

Let j and k be equal to 1.

I apply (10) to all four combinations (t, g) ∈ {t0; t1} × {gc; gt}.

First, letting (t, g) = (t0, gc) and substituting y = h1(u, t0) yields FYt0,gc (1)|D(0)=1(h1(u, t0)) = FUgc |D(0)=1(u).

Then applying F−1
Yt0,gc (1)|D(0)=1(.) to each side, we have, ∀u ∈ U|G = gc, D(0) = 1,

h1(u, t0) = F−1
Yt0,gc (1)|D(0)=1

(
FUgc |D(0)=1(u)

)
. (11)

Second, letting (t, g) = (t1, gc) and using the fact that ∀y ∈ Yt1,gc |D(0) = 1, h−1
1 (y; 1) ∈ Ugc |D(0) = 1,

and applying the transformation F−1
Ugc |D(0)=1(.) to both sides of (10), yields

F−1
Ugc |D(0)=1(FYt1,gc (1)|D(0)=1(y)) = h−1

1 (y; t1). (12)

Combining (11) and (12) yields, ∀y ∈ Yt1,gc |D(0) = 1,

h1(h−1
1 (y; t1), t0) = F−1

Yt0,gc (1)|D(0)=1

(
FYt1,gc (1)|D(0)=1(y)

)
. (13)

Third, apply (10) with (t, g) = (t0, gt) and substitute to get y = h1(u, t0) to get

FYt0,gt (1)|D(0)=1(h1(u, t0)) = FUgt |D(0)=1(u). (14)

Fourth, apply (10) with (t, g) = (t1, gt) to get

FYt1,gt (1)|D(0)=1(y) = FUgt |D(0)=1(h−1
1 (y; t1)). (15)

Therefore, combining (14) and (15) yields

FYt1,gt (1)|D(0)=1(y) = FYt0,gt (1)|D(0)=1(h1(h−1
1 (y; t1), t0)). (16)
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Since by Assumption CIC 4' Yt1,gt |D(0) = 1 ⊆ Yt1,gc |D(0) = 1, substituting (13) in (16) we �nally get

FYt1,gt (1)|D(0)=1(y) = FYt0,gt |D=1

(
F−1
Yt0,gc |D=1

(
FYt1,gc |D=1(y)

))
(17)

once noted that FYt0,gt (1)|D(0)=1(.) = FYt0,gt |D=1(.), F−1
Yt0,gt (1)|D(0)=1(.) = F−1

Yt0,gt |D=1(.) and FYt1,gc (1)|D(0)=1(.) =

FYt1,gc |D=1(.).

Letting j and k be equal to 0 and can show that

FYt1,gt (0)|D(0)=0(y) = FYt0,gt |D=0

(
F−1
Yt0,gc |D=0

(
FYt1,gc |D=0(y)

))
. (18)

Then,

FYt1,gt |D=1(y) = FYt1,gt (1)|D(1)=1(y)

= FYt1,gt (1)|D(1)=1,D(0)=1(y)×P(Dt1,gt(0) = 1|D(1) = 1)+FYt1,gt (1)|D(1)=1,D(0)=0(y)×P(Dt1,gt(0) = 0|D(1) = 1).

By Assumption CIC 6, this is equal to

FYt1,gt (1)|D(0)=1(y)× P(Dt1,gt(0) = 1)
P(Dt1,gt(1) = 1)

+FYt1,gt (1)|D(1)=1,D(0)=0(y)× P(Dt1,gt(1) = 1)− P(Dt1,gt(0) = 1)
P(Dt1,gt(1) = 1)

.

By Assumption CIC 3', this can be rewritten as

FYt1,gt (1)|D(0)=1(y)× P(Dt0,gt(0) = 1)
P(Dt1,gt(1) = 1)

+FYt1,gt (1)|D(1)=1,D(0)=0(y)× P(Dt1,gt(1) = 1)− P(Dt0,gt(0) = 1)
P(Dt1,gt(1) = 1)

.

According to (21), this is equal to

FYt0,gt |D=1

(
F−1
Yt0,gc |D=1

(
FYt1,gc |D=1(y)

))
× P(Dt0,gt(0) = 1)

P(Dt1,gt(1) = 1)

+FYt1,gt (1)|D(1)=1,D(0)=0(y)× P(Dt1,gt(1) = 1)− P(Dt0,gt(0) = 1)
P(Dt1,gt(1) = 1)

.

Rearranging this last equation yields the �rst part of i).
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Now, I prove the second part of i). According to (18),

FYt0,gt |D=0

(
F−1
Yt0,gc |D=0

(
FYt1,gc |D=0(y)

))
= FYt1,gt (0)|D(0)=0(y)

= FYt1,gt (0)|D(1)=0,D(0)=0(y)×P(Dt1,gt(0) = 0|D(1) = 0)+FYt1,gt (0)|D(1)=1,D(0)=0(y)×P(Dt1,gt(1) = 1|D(0) = 0).

By Assumption CIC 6, this is equal to

FYt1,gt (0)|D(1)=0(y)× P(Dt1,gt(1) = 0)
P(Dt1,gt(0) = 0)

+FYt1,gt (0)|D(1)=1,D(0)=0(y)× P(Dt1,gt(1) = 1)− P(Dt1,gt(0) = 1)
P(Dt1,gt(0) = 0)

.

By Assumption CIC 3', this can be rewritten as

FYt1,gt (0)|D(1)=0(y)× P(Dt1,gt(1) = 0)
P(Dt0,gt(0) = 0)

+FYt1,gt (0)|D(1)=1,D(0)=0(y)× P(Dt1,gt(1) = 1)− P(Dt0,gt(0) = 1)
P(Dt0,gt(0) = 0)

.

Rearranging this last equation yields the second part of i).

Proof of ii)

From (21), one can show that Yt1,gt(1)|D(0) = 1 and F−1
Yt1,gc |D=1

(
FYt0,gc |D=1(Yt0,gt)

)
|D = 1 have the

same cdf. Similarly, one can show from (18) that Yt1,gt(0)|D(0) = 0 and

F−1
Yt1,gc |D=0

(
FYt0,gc |D=0(Yt0,gt)

)
|D = 0 also have the same cdf. Therefore, taking expectations yields

E (Yt1,gt(1)|D(0) = 1) = E
(
F−1
Yt1,gc |D=1

(
FYt0,gc |D=1(Yt0,gt)

)
|D = 1

)
(19)

and

E (Yt1,gt(0)|D(0) = 0) = E
(
F−1
Yt1,gc |D=0

(
FYt0,gc |D=0(Yt0,gt)

)
|D = 0

)
(20)

Then,

E (Yt1,gt |D = 1) = E (Yt1,gt |D(1) = 1)

= E (Yt1,gt(1)|D(0) = D(1) = 1)× P(Dt1,gt(0) = 1|D(1) = 1)

+E (Yt1,gt(1)|D(1) > D(0))× P(Dt1,gt(0) = 1|D(1) = 1).
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By Assumption CIC 6 this is equal to

E (Yt1,gt(1)|D(0) = 1)×P(Dt1,gt(0) = 1)
P(Dt1,gt(1) = 1)

+E (Yt1,gt(1)|D(1) > D(0))×P(Dt1,gt(1) = 1)− P(Dt1,gt(0) = 1)
P(Dt1,gt(1) = 1)

.

By Assumption CIC 3' this can be rewritten as

E (Yt1,gt(1)|D(0) = 1)×P(Dt0,gt(0) = 1)
P(Dt1,gt(1) = 1)

+E (Yt1,gt(1)|D(1) > D(0))×P(Dt1,gt(1) = 1)− P(Dt0,gt(0) = 1)
P(Dt1,gt(1) = 1)

.

By (19) this is equal to

E
(
F−1
Yt1,gc |D=1

(
FYt0,gc |D=1(Yt0,gt)

)
|D = 1

)
× P(Dt0,gt(0) = 1)

P(Dt1,gt(1) = 1)

+E (Yt1,gt(1)|D(1) > D(0))× P(Dt1,gt(1) = 1)− P(Dt0,gt(0) = 1)
P(Dt1,gt(1) = 1)

.

Rearranging this last equation yields:

E (Yt1,gt
(1)|D(1) > D(0)) =

E (Yt1,gt
|D = 1)× P(Dt1,gt

= 1)− E
(
F−1

Yt1,gc |D=1

(
FYt0,gc |D=1(Yt0,gt

)
)
|D = 1

)
× P(Dt0,gt

= 1)

P(Dt1,gt
= 1)− P(Dt0,gt

= 1)
.

Similarly, one can show that

E (Yt1,gt
(0)|D(1) > D(0)) =

E
(
F−1

Yt1,gc |D=0

(
FYt0,gc |D=0(Yt0,gt

)
)
|D = 0

)
× P(Dt0,gt

= 0)− E (Yt1,gt
|D = 0)× P(Dt1,gt

= 0)

P(Dt0,gt
= 0)− P(Dt1,gt

= 0)
.

Combining these last two equations yields the result.

Proof of iii)

τ IV−CICq = F−1
Yt1,gt (1)|D(1)>D(0)(q)− F

−1
Yt1,gt (0)|D(1)>D(0)(q)

= inf
{
y ∈ Yt1,gt(1)|D(1) > D(0)/FYt1,gt (1)|D(1)>D(0)(y) ≥ q

}
−inf

{
y ∈ Yt1,gt(0)|D(1) > D(0)/FYt1,gt (0)|D(1)>D(0)(y) ≥ q

}
.

= inf
{
y ∈ Yt1,gt |D = 1/FYt1,gt (1)|D(1)>D(0)(y) ≥ q

}
−inf

{
y ∈ Yt1,gc |D = 0/FYt1,gt (0)|D(1)>D(0)(y) ≥ q

}
.

The �rst change in support holds because Yt1,gt(1)|D(1) > D(0) ⊆ Yt1,gt |D = 1: D(1) > D(0) ⇒
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D(1) = 1, and D = D(1) in the treatment group × period 1 cell.

The second change in support holds since Yt1,gt(0)|D(1) > D(0) ⊆ Yt1,gc(0)|D(1) > D(0) because

of Assumption CIC 4'. Moreover, D(1) > D(0) ⇒ D(0) = 0 and D = D(0) in the treatment

group × period 1 cell, so that Yt1,gc(0)|D(1) > D(0) ⊆ Yt1,gc |D = 0. Combining those two steps

yieldsYt1,gt(0)|D(1) > D(0) ⊆ Yt1,gc |D = 0.

Finally, using the formulas in i), we get that this last expression is equal to

inf
{
y ∈ Yt1,gt |D = 1/H1(y) ≥ q

}
− inf

{
y ∈ Yt1,gc |D = 0/H0(y) ≥ q

}
.

QED.

Proof of Proposition CIC 2:

As shown in the proof of Theorem CIC 2,

FYt1,gt (1)|D(0)=1(y) = FYt0,gt |D(0)=1

(
F−1
Yt0,gc |D(0)=1

(
FYt1,gc |D(0)=1(y)

))
(21)

FYt0,gt (1)|D(0)=1(.) = FYt0,gt |D=1(.), F−1
Yt0,gc (1)|D(0)=1(.) = F−1

Yt0,gc |D=1(.), but FYt1,gc (1)|D(0)=1(.) is not

observed.

FYt1,gc |D=1(y) = FYt1,gc (1)|D(1)=1,D(0)=1(y)× P(Dt1,gc(1) = 1, Dt1,gc(0) = 1|D(1) = 1)

+FYt1,gc (1)|D(1)=1,D(0)=0(y)× P(Dt1,gc(1) = 1, Dt1,gc(0) = 0|D(1) = 1)

By Assumption CIC 6' and Assumption CIC 3', this is equal to

FYt1,gc (1)|D(0)=1(y)× P(Dt0,gc(0) = 1)
P(Dt1,gc(1) = 1)

+FYt1,gc (1)|D(1)=1,D(0)=0(y)× P(Dt1,gc(1) = 1)− P(Dt0,gc(0) = 1)
P(Dt1,gc(1) = 1)

.
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Since 0 ≤ FYt1,gc (1)|D(1)=1,D(0)=0(y) ≤ 1 and P(Dt1,gc(1) = 1)− P(Dt0,gc(0) = 1) ≥ 0,

FYt1,gc |D=1(y)× P(Dt1,gc = 1)− (P(Dt1,gc = 1)− P(Dt0,gc = 1))

P(Dt0,gc = 1)
≤ FYt1,gc (1)|D(0)=1(y)

and

FYt1,gc (1)|D(0)=1(y) ≤
FYt1,gc |D=1(y)× P(Dt1,gc = 1)

P(Dt0,gc = 1)
. (22)

Plugging (22) into (21) �nally yields

FYt0,gt |D=1

(
F−1
Yt0,gc |D=1

(
FYt1,gc |D=1(y)× P(Dt1,gc = 1)− (P(Dt1,gc = 1)− P(Dt0,gc = 1))

P(Dt0,gc = 1)

))
≤ FYt1,gt (1)|D(0)=1(y)

and

FYt1,gt (1)|D(0)=1(y) ≤ FYt0,gt |D=1

(
F−1
Yt0,gc |D=1

(
FYt1,gc |D=1(y)× P(Dt1,gc = 1)

P(Dt0,gc = 1)

))
. (23)

Then,

FYt1,gt |D=1(y) = FYt1,gt (1)|D(2)=1(y)

= FYt1,gt (1)|D(2)=1,D(1)=1,D(0)=1(y)× P(Dt1,gt(2) = 1, Dt1,gt(1) = 1, Dt1,gt(0) = 1|D(2) = 1)

+FYt1,gt (1)|D(2)=1,D(1)=1,D(0)=0(y)× P(Dt1,gt(2) = 1, Dt1,gt(1) = 1, Dt1,gt(0) = 0|D(2) = 1)

+FYt1,gt (1)|D(2)=1,D(1)=0,D(0)=0(y)× P(Dt1,gt(2) = 1, Dt1,gt(1) = 0, Dt1,gt(0) = 0|D(2) = 1)

By Assumption CIC 6', this is equal to

FYt1,gt (1)|D(0)=1(y)× P(Dt1,gt(0) = 1)
P(Dt1,gt(2) = 1)

+FYt1,gt (1)|D(1)=1,D(0)=0(y)× P(Dt1,gt(1) = 1, Dt1,gt(0) = 0)
P(Dt1,gt(2) = 1)

+FYt1,gt (1)|D(2)=1,D(1)=0(y)× P(Dt1,gt(2) = 1, Dt1,gt(1) = 0)
P(Dt1,gt(2) = 1)

.
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By Assumption CIC 6', Assumption CIC 3' and Assumption CIC 7, this can be rewritten as

FYt1,gt (1)|D(0)=1(y)× P(Dt0,gt(0) = 1)
P(Dt1,gt(2) = 1)

+FYt1,gt (1)|D(1)=1,D(0)=0(y)× P(Dt1,gc(1) = 1)− P(Dt0,gc(0) = 1)
P(Dt1,gt(2) = 1)

+FYt1,gt (1)|D(2)=1,D(1)=0(y)×P(Dt1,gt(2) = 1)− [P(Dt0,gt(0) = 1) + P(Dt1,gc(1) = 1)− P(Dt0,gc(0) = 1)]
P(Dt1,gt(2) = 1)

.

Since 0 ≤ FYt1,gt (1)|D(1)=1,D(0)=0(y) ≤ 1 and using (23) we �nally get

B1,CIC−IV
− ≤ FYt1,gt (1)|D(2)=1,D(1)=0(y) ≤ B1,CIC−IV

+ (24)

with

B1,CIC−IV
− =

FYt1,gt
|D=1(y)×P(Dt1,gt=1)−FYt0,gt

|D=1

(
F−1

Yt0,gc |D=1

(
FYt1,gc |D=1(y)×P(Dt1,gc=1)

P(Dt0,gc=1)

))
×P(Dt0,gt=1)−[P(Dt1,gc=1)−P(Dt0,gc=1)]

P(Dt1,gt=1)−P(Dt0,gt=1)−[P(Dt1,gc=1)−P(Dt0,gc=1)]

and

B1,CIC−IV
+ =

FYt1,gt
|D=1(y)×P(Dt1,gt=1)−FYt0,gt

|D=1

(
F−1

Yt0,gc |D=1

(
FYt1,gc |D=1(y)×P(Dt1,gc=1)−(P(Dt1,gc=1)−P(Dt0,gc=1))

P(Dt0,gc=1)

))
×P(Dt0,gt=1)

P(Dt1,gt=1)−P(Dt0,gt=1)−[P(Dt1,gc=1)−P(Dt0,gc=1)] .

Similarly, one can show that

B0,CIC−IV
− ≤ FYt1,gt (0)|D(2)=1,D(1)=0(y) ≤ B0,CIC−IV

+ (25)

with

B0,CIC−IV
− =

FYt1,gt
|D=0(y)×P(Dt1,gt=0)−FYt0,gt

|D=0

(
F−1

Yt0,gc |D=0

(
FYt1,gc |D=0(y)×

P(Dt1,gc=0)

P(Dt0,gc=0)

))
×P(Dt0,gt=0)−[P(Dt1,gc=0)−P(Dt0,gc=0)]

P(Dt1,gt=0)−P(Dt0,gt=0)−[P(Dt1,gc=0)−P(Dt0,gc=0)]

and

B0,CIC−IV
+ =

FYt1,gt
|D=0(y)×P(Dt1,gt=0)−FYt0,gt

|D=0

(
F−1

Yt0,gc |D=0

(
FYt1,gc |D=0(y)×P(Dt1,gc=0)−(P(Dt1,gc=0)−P(Dt0,gc=0))

P(Dt0,gc=0)

))
×P(Dt0,gt=0)

P(Dt1,gt=0)−P(Dt0,gt=0)−[P(Dt1,gc=0)−P(Dt0,gc=0)] .

QED.
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